| 研究生: |
廖士勛 Liao, Syun-Shih |
|---|---|
| 論文名稱: |
台南都會區機車行車型態與氣態污染物排放特性研究 Development of Local Driving Cycle for Motorcycle Emission Estimation of Gaseous Pollutants in Tainan |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 台南都會區 、機車行車型態 、一般日/週末 、氣態污染物 、臭氧生成潛勢 |
| 外文關鍵詞: | Local Driving Cycle, Weekday/Weekend, Motorcycle Emission, Chassis Dynamometer, Gaseous Pollutants, Ozone Formation Potential |
| 相關次數: | 點閱:168 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固定追車法,於台南都會區六條主要道路,實地進行一般工作日及週末時段機車行車狀態調查,進而建置台南都會區兩種時段行車型態(一般工作日行車型態、週末行車型態);再於車體動力計利用所建立兩種行車型態進行機車尾氣污染物排放測定,比較機車於台南行車型態與其它都會區行車型態排放氣態污染物與臭氧生成潛勢差異。
研究結果顯示,台南都會區一般工作日機車行車型態(TNN Cycle) 特徵為:平均行駛速率為21.7 km/hr、平均行駛速率為30.2 km/hr、怠速時間比為28.3 %、定速時間比為13.2 %、加速時間比為29.3 %、減速時間比為29.3 %;週末機車行車型態(TNNW Cycle) 特徵為:平均行駛速率為22.5 km/hr、平均行駛速率為31.3 km/hr、怠速時間比27.9 %、定速時間比13.2%、加速時間比28.4 %、減速時間比30.5 %。台南都會區兩種時段行車型態之行駛特性差異性不大,與其它行車型態(TPE Type、KH Type 32、WMTC及ECE)比較,呈現行駛速度較高、高速行駛速度分佈比例較大之行車特徵。
以機車車體動力計模擬台南行車型態,量測基準污染物(CO、HC與NOx)排放係數結果顯示:機車於一般日、週末台南行車型態所致單位里程排放係數分別為CO--4.0 g/km、4.3 g/km;THC-- 0.8 g/km、0.7 g/km;NOx -- 0.5 g/km、0.4 g/km。THC及NOx排放於一般工作日型態較高,CO排放於週末型態較高,差異輻度並不大。與其它行車型態比較,CO及THC排放係數依序為 TNN > TNNW > TPE Type > KH Type 32 > WMTC > ECE;NOx排放係數依序為 KH Type 32 > TNN > TPE Type > TNNW > WMTC > ECE。分析不同行車型態CO2碳重佔總碳重比例顯示,TNN、TNNW及TPE 等型態所佔比例較低,顯示這三種行車型態引擎燃燒效率較不佳,與這三種行車型態於高速行駛分佈比例較高應有關連性。
VOCs(烷類+烯類+芳香烴+醛酮類)排放應與THC密切相關,研究結果顯示台南都會區機車排放VOCs係數亦為一般日型態>週末型態,VOCs族群分佔比例為:烷類 > 芳香烴 > 烯類 > 醛酮類化合物。研究顯示台南機車行車型態排放VOCs族群所致臭氧生成潛勢(OFP) 依序為芳香烴 > 烯類 > 烷類 > 醛酮類化合物。台南行車型態臭氧生成潛勢並未具週末時段較高效應。都會區行車型態臭氧生成潛勢依序為 TNN > TNNW > TPE Type > KH Type,台南都會區機車行駛特性排放廢氣所致臭氧生成潛勢較為嚴重。
The study had been conducted to develop the localized motorcycle driving cycle in weekday and weekend in the urban areas of Tainan and test the emissions under these two driving cycles on a Chassis dynamometer. On-road speed-time data were collected by a motorcycle along six selected routes located in Tainan city. The representative driving cycles, TNN(represents weekday cycle) and TNNW(represents weekend cycle), were synthesised from the field driving record by matching the 12 parameters among overall survey results. The characteristics of TNN Cycle are similar to those of TNNW Cycle which includes high travel speed, frequent acceleration-deceleration change, and less duration in cruising. The average speed in TNN and TNNW Cycle are 21.7 and 22.5 km/hr while the average running speed are 30.2 and 31.3 km/hr;average of all acceleration and deceleration rate are 0.7 m/s2;duration of driving period are 116.2 and 111.9 seconds;number of acceleration-deceleration change within one driving period are 7.8;driving mode of idling are 28.3 % and 27.9 %;cruising is 13.2 %;acceleration are 29.3 % and 28.4 %;deceleration are 29.3 % and 30.5 %. Minor differences between these two driving cycles wrer observed.
Emission factors of criteria air pollutant from fuel-injection motorcycle had been derived by conducting the dynamometer test with two driving cycles (TNN cycle and TNNW cycle). The emission factors of CO for TNN/TNNW cycle are 4.0 / 4.3 g/km. The factors (g/km) are 0.8 / 0.7 for THC, and 0.5 / 0.4 for NOx, respectively. The emission factors did not variate significantlybetween these two driving cycles. Compare with two localized driving cycles (TPE and KH Cycle) and international cycles (ECE and WMTC) the emission factors of Tainan driving cycles are slightly higher.
The characteristics of VOCs emission (alkanes, alkenes, aromatics, aldehydes and ketones) is TNN > TNNW. The ozone-forming potential (OFP) of total VOC in different localized driving cycles (TNN, TNNW, TPE, KH) are 2.64, 2.28, 2.03, 1.52 g-O3/km, respectively.
Atkinson R., 1989. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Journal of Physical and Chemical 1, 1-246.
Atkinson R., 1990. Gas-phase tropospheric chemistry organic compounds: a review. Atmospheric Environment 24 (1), 1-41.
Andrade M.F., Ynoue R.Y., Harley R., 2003. Ozone Modeling in an Ethanol-, Gasoline- and Diesel-Fuel Environment: the Metropolitan Area of São Paulo, Brazil. A&WMA’s 96th Annual Conference & Exhibition June 22-26.
Bailey J. C., Schmidl B., Williams M. L., 1990. Speciated Hydrocarbon Emissions from Vehicles Operated over the Normal Speed Range on the Road. Atmospheric Environment 24(1), 43-52.
Chan C.C., Nien C.K., Tasi C.Y., Her G.R., 1995. Comparison of tail pipe emissions from motorcycle and passenger cars. Journal of Air & Waste Management Association 45(2), 116-124.
Carter W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Journal of Air & Waste Management Association 44, 881-899.
Derwent R.G., 1996. Photochemical Ozone Creation Potentials for A Large Number of Reactive Hydrocarbons Under European Conditions. Atmospheric Environment 30, 181-199.
Emission Test Cycles, Ecopoint Inc. http://www.dieselnet.com/standards/cycles/
Eva Ericsson, 2001, Independent Driving Pattern Factors and Their Influence on Fuel-Use and Exhaust Emission Factors. Transportation Research Part D: Transport and Environment 6(5), 325-345.
Frey H.C., Rouphail N. M., Unal A., Colyar J. D., 2001. Measurement of On-Road Tailpipe CO, NO, and HC Emissions Using a Portable Instrument. Preparation for submittal to Air & Waste Management Association Journal.
Gao H. O., Debbie A. N., 2007, The Impact of Rush Hour Traffic and Mix on the Ozone Weekend Effect in Southern California. Transportation Research Part D 12, 83–98.
Hesham Rakha, Kyoungho Ahn, Antonio Trani, 2004, Development of VT-Micro Model for Estimating Hot Stabilized Light Duty Vehicle and Truck Emissions. Transportation Research Part D 9, 49-74.
Hung W.T., Tong H.Y., Lee C.P., Ha K., Pao L.Y., 2007, Development of A Practical Driving Cycle Construction Methodology: A Case Study in Hong Kong. Transportation Research Part D 12, 115-128.
Jia L.W., Shen M.Q., Wang J., Lin M.Q., 2005. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123 (1-3), 29-34.
Kuhler M., Karstens D., 1978, Improved Driving Cycle for Testing Automotive Exhaust Emissions, SAE Technical Paper 780650, doi:10.4271/780650.
Kent J.H., Allen G.H., Rule G., A Driving Cycle for Sydney, Transportation Research 12(3), 147-152.
Kenworthy, J. R., Newman, P. W. G., 1982. A Driving Cycle for Perth : Methodology and Preliminary Results. SAE-A/ARRB Conf. Paper 82149.
Kamble, S. H., Mathew, T. V., Sharma, G.K., 2009. Development of Real-World Driving Cycle: Case Study of Pune, India. Transportation Research Part D: Transport and Environment 14(2), 132-140.
Leong S.T., Muttamara S., Laortanakul P., 2002. Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36, 3495-3503.
Montazeri-Gh M., M. Naghizadeh, 2007, Development of the Tehran Car Driving Cycle. Int. J. of Environment and Pollution 30(1), 106-118.
Nesamani K.S., Subramanian K.P., 2011, Development of A Driving Cycle for Intra-City Buses in Chennai, India. Atmospheric Environment 45(31), 5469-5476.
Orbital Australia Pty Ltd, 2005, NISE 2 –Contract 2 Drive Cycle and Short Test , Development, Issue 2, Final Report.
Rodrigo J. S., Raúl G.E. Morales S., Manuel A. Leiva G., 2012, Ozone Weekend Effect in Santiago, Chile. Environmental Pollution 162, 72-79.
Saleh W., Kumar R., Kirby H., Kumar P., 2009. Real world driving cycle for motorcycles in Edinburgh. Transportation Research Part D: Transport and Environment 14(5), 326-333.
Schifter, 2000,Estimation of Motor Vehicle Toxic Emissions In The Metropolitan Area of Mexico City, Environ. Sci. Technol., 34:3606-3610.
Tamsanya S., Chungpaibulpatana S., Limmeechokchai B., 2009. Development of A Driving Cycle for The Measurement of Fuel Consumption and Exhaust Emissions of Automobiles in Bangkok During Peak Periods. International Journal of Automotive Technology 10(2), 251-264.
Tong H. Y., Hung W. T., Cheung C. S., 1999. Development of a driving cycle for Hong Kong. Atmospheric Environment 33(15), 2323-2335.
Tong H.Y., Tung H.D., Hung W.T., Nguyen H.V., 2010. Development of driving cycles for motorcycles and light-duty vehicles in Vietnam. Atmospheric Environment 45, 5191-5199.
Tong H. Y., Hung W. T., 2010. A Framework for Developing Driving Cycles with On‐‐Road Driving Data. Transport Reviews 30(5), 589–615.
Tzirakis E., Pitsas K., Zannikos F., Stournas S., 2006. Vehicle Emissions and Driving Cycles: Comparison of The Athens Driving Cycle (Adc) with ECE-15 and European Driving Cycle (Edc). Global NEST Journal 8(3), 282-290.
UN, 2005, Report on the Development of A Global Technical Regulation Concerning Worldwide Harmonized Motorcycle Emissions Certification Procedure (WMTC). TRANS/WP.29/2005/55.
U.S. Environmental Protection Agency, 2001, Comparison of Start Emissions in the LA92 and ST01 Test Cycles. EPA420-R-01-025, Office of Transportation and Air Quality.
Wang Q., Huo H., He K., Yao Z., Zhang, Q., 2008. Characterization of vehicle driving patterns and development of driving cycles in Chinese cities. Transportation Research Part D: Transport and Environment 13(5), 289–297.
Wang C. S., Huang Q. D., Ling R. S., Zhang, Y. T., 1985. Measurement of Passenger Car Operation in Beijing Pertinent to Exhaust and Fuel Economy. SAE paper 852242.
李秉壬,1989,市區小客車行車型態之研究,國立成功大學交通管理(科學)研究所碩士論文。
鄧金地,1996,台北都會區小型汽車與機車行車型態之研究,國立交通大學交通運輸研究所碩士論文。
翁閎政,1998,機車排氣之揮發性有機物特徵及光化反應性研究,國立成功大學環境工程研究所碩士論文。
何文淵,1999,汽油車引擎廢氣揮發性有機物成份及光化反應潛勢,國立成功大學環境工程研究所碩士論文。
趙浩然,2000,多種機動車輛排放醛酮類化合物之研究,國立成功大學環境工程學系博士論文。
林志峰,2001,屏東縣機車行車型態與排放係數之調查研究,國立中山大學環境工程研究所碩士論文。
劉育穎,2001,機車排放醛酮類化合物特徵與光化反應性研究,國立成功大學環境工程研究所碩士論文。
王文正,2002,以實際道路行車型態作動力計測試之機車排放係數研究,國立中山大學環境工程研究所碩士論文。
蘇聖群,2003,NOx與NMHC濃度對臭氧產生濃度之影響與探討,國立中興大學環境工程學系碩士班碩士論文。
彭柏鈞,2003,都會區機車行車型態與空氣污染物排放特性之調查,國立成功大學環境工程研究所碩士論文。
戴君龍,2004,都會與非都會地區能見度與空氣品質關係之探討,嘉南藥理科技大學環境工程科學系碩士論文。
張安伶,2006,油品成分對機車引擎排放氣態污染物影響研究,國立成功大學環境工程研究所碩士論文。
周欣慧,2008,酒精汽油對不同里程車輛引擎排放氣態污染物影響研究,碩士論文,國立成功大學環境工程研究所
張瑋婷,2009,機車排放氣態污染物區域性特徵與影響因素研究,國立成功大學環境工程研究所碩士論文。
賴彥銘,2010,台中都會區機車行車型態與廢氣特徵研究,輔英科技大學環境工程與科學系碩士班碩士論文。
姚永真,2010,汽油成份於四行程機車引擎氣態污染物排放特徵及模式研究,國立成功大學環境工程研究所博士論文。
張開駿,2010,汽油含氧量及芳香烴含量對四行程機車排放氣態污染物之影響,國立成功大學環境工程研究所碩士論文。
王建文,2010,台灣三大都會區空氣污染物之週末效應,國立嘉義大學史地學系碩士班碩士論文。
黃萱琪,2011,都會區機車行車型態與空氣污染物排放特性關聯性研究,國立成功大學環境工程研究所碩士論文。
談珮華、周佳、梁靜宜、吳柏霖,2008,台北都會區的假期效應,大氣科學,第三十六期第三號,197-215,9月。
行政院環境保護署,2001,都會區機車行車型態與排放係數研究,EPA-90-FA13-03-B034。
行政院環境保護署,2004,台灣地區汽車汙染現況調查及代表性行車型態相關性測試,EPA-92-FA13-03-A113。
行政院環境保護署,2009,空氣污染物排放清冊資料更新管理及排放量空間分佈查詢建置,EPA-97-FA11-03-A176。
行政院環保署委託春鉅環境科技公司,1997,高雄都會區行車型態及平均排放係數計算程式建立與更新計畫。
交通部運輸研究所,2008,能源消耗、污染排放與車輛使用之整合關聯模式研究,MOTC-IOT-96-SDB006。
台南市環境保護局,2002,台南市移動污染源稽查管制計畫。
台南縣環境保護局,2007,台南縣柴油車動力計排煙檢測站檢測計畫。
台南市環境保護局,2008-2011,台南市移動污染源稽查管制計畫。
台南市環境保護局,2010,台南市柴油車動力計排煙檢測站檢測計畫。
台南市環境保護局,2011,台南市空氣品質維護及考核管制計畫。
國際清潔交通委員會,2011,石油煉製以及超低硫汽油和柴油燃料生產簡介。
黃靖雄,2002年,現代低公害省油汽車排氣污染控制技術及安裝置, 全華科技圖書出版。
薛天山,2009,內燃機,ISBN 978-957-21-6464-8,全華圖書股份有限公司
行政院環保署移動污染源管制網,http://mobile.epa.gov.tw/index.aspx
行政院環保署環保專案查詢系統,http://epq.epa.gov.tw/mp.aspx
交通部統計處,http://www.motc.gov.tw/mocwebGIP/wSite/mp?mp=1
台南市政府全球資訊網,http://www.tainan.gov.tw/tainan/
財團法人車輛測試研究中心,http://www.artc.org.tw/index.aspx
行政院環保署空氣污染排放量查詢系統,http://ivy2.epa.gov.tw/air-ei/new_main2-0.htm