簡易檢索 / 詳目顯示

研究生: 曾維揚
Tseng, Wei-yang
論文名稱: 表面改質之二氧化矽粒子與聚二甲基矽氧烷的混合Langmuir層行為和LB膜特性
Mixed Langmuir Layer Behavior and Langmuir-Blodgett Film Characteristics of Surface Modified Silica Particles with Poly(dimethylsiloxane)
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 氣液界面無機/有機混成膜Langmuir層二氧化矽粒子Langmuir-Blodgett膜
外文關鍵詞: inorganic/organic hybrid film, silica particle, Langmuir-Blodgett film, Langmuir layer, air/liquid interface
相關次數: 點閱:110下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別利用四碳醇、八碳醇及十六碳醇對二氧化矽粒子表面進行改質,以控制二氧化矽粒子表面的親疏水性,並探討表面經改質之二氧化矽粒子與聚二甲基矽氧烷(PDMS)在氣/液界面上所形成之混合Langmuir層的行為,以及其混合Langmuir-Blodgett(LB)膜的形態。
    實驗結果顯示表面經四碳醇改質之二氧化矽粒子(C4H9-SiO2)與PDMS所形成的混合Langmuir層,其表面壓-每粒子佔據面積等溫線與二氧化矽粒子Langmuir層的等溫線相較有左移的趨勢。這可能是因為C4H9-SiO2表面的疏水性較弱,在壓縮混合Langmuir層的過程中有粒子的損失所造成的。而表面經八碳醇或十六碳醇改質之二氧化矽粒子(C8H17-SiO2或C16H33-SiO2),表面則具有較強的疏水性,當其與PDMS形成混合Langmuir層時,因PDMS的存在使得等溫線的lift-off point往右偏移。
    利用LB沉積技術將氣液界面上的Langmuir層轉移至玻璃基板上,並以掃描式電子顯微鏡進行分析。結果顯示可在基板上製備出具有高表面覆蓋率的C4H9-SiO2/PDMS混合LB膜,由於其粒子間的吸引力較小,因此在混合Langmuir層中並未出現相分離的情形。對C8H17-SiO2/PDMS混合系統而言,可能因為粒子間的作用力較大,所以在壓縮混合Langmuir層的過程中出現相分離的情形,且使得PDMS被擠出粒子層,所形成之LB膜則有較多的空洞結構。C16H33-SiO2/PDMS混合LB膜的表面形態與C16H33-SiO2的類似,此時混合Langmuir層應處於相分離的狀態,且當PDMS被擠出氣液界面時,似乎就聚集在C16H33-SiO2粒子層的不均勻結構周圍。

    In this study, the surface hydrophobicity of silica particles was controlled through surface modification by butanol, octanol, and hexadecanol, respectively. The Langmuir layer behavior and Langmuir-Blodgett (LB) film morphology of the mixed silica particle/poly(dimethylsiloxane) (PDMS) systems were then investigated.
    Experimental results demonstrated that for the mixed Langmuir layer of PDMS and silica particles with surface modification by butanol, the surface pressure-area per particle isotherm shifted to the left in comparison with that of a silica particle Langmuir layer. This probably resulted from a loss of particles during the compression stage due to the less hydrophobic characteristic of the silica particle surface. Strong hydrophobic surface characteristic was found for silica particles with surface modification by octanol or hexadecanol. For the mixed Langmuir layer of PDMS with the more hydrophobic silica particles, the lift-off point of the isotherm shifted to the right in the presence of PDMS.
    The Langmuir layers at the air/liquid interface were transferred onto glass substrates by the Langmuir-Blogett (LB) deposition technique, and the LB films were analyzed by scanning electron microscopy (SEM). It was found that a mixed C4H9-SiO2/PDMS LB film with a high surface coverage could be fabricated on a glass substrate. Since only a weak interaction was available between particles, no phase separation occurred in the mixed Langmuir layer. For the mixed C8H17-SiO2/PDMS system, strong interactions between particles might result in phase separation in the mixed layer with the PDMS expulsion during the compression stage, and a LB film with more holes was obtained. The surface morphology of a mixed C16H33-SiO2/PDMS LB film was similar to that of a C16H33-SiO2 LB film. It appeared that a phase separation occurred in the mixed Langmuir layer and PDMS molecules aggregated around the inhomogeneous structures of the C16H33-SiO2 layer when they were expelled from the air/liquid interface.

    摘要 Ⅰ Abstract Ⅲ 誌謝 Ⅴ 總目錄 Ⅵ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 2 1.3.1 奈米粒子的製備 2 1.3.2 奈米粒子的表面改質 3 1.3.3 粒子在氣/液界面上的行為 5 1.3.4 二維粒子薄膜組裝 7 1.3.5 奈米混成材料與混成膜的製備 9 第二章 實驗 13 2.1 藥品 13 2.2 儀器 13 2.2.1 Langmuir槽 13 2.2.2 雷射光散射法粒徑測定儀 14 2.2.3 紅外光光譜儀 15 2.2.4 靜態接觸角測量儀 15 2.2.5 掃描式電子顯微鏡 16 2.3方法 16 2.3.1 製備二氧化矽粒子 17 2.3.2 二氧化矽粒子的表面改質 17 2.3.3 二氧化矽粒子的純化 18 2.3.4 紅外光譜的測量 18 2.3.5 二氧化矽分散液的製備 19 2.3.6 SiO2和SiO2/PDMS Langmuir層等溫線的量測 19 2.3.7 SiO2和SiO2/PDMS Langmuir層遲滯曲線的量測 20 2.3.8 SiO2和SiO2/PDMS Langmuir層鬆弛曲線的量測 21 2.3.9 SiO2和SiO2/PDMS LB膜的製備 21 第三章 結果與討論 29 3.1 二氧化矽粒子的粒徑分布 29 3.2 二氧化矽粒子的FTIR分析與分散液的穩定性 29 3.3 表面壓-面積等溫線 30 3.4 遲滯曲線 34 3.5 鬆弛曲線 36 3.6 薄膜表面形態 38 第四章 結論 84 參考文獻 86 自述 99

    Ahmed, A., Gallei, E., and Unger, K. K., “An Infrared Study of Surface Hydrolysis of Alcohol Bonded Silica,” Ber. Bunsenges. Physik. Chem. 79, 66-71, 1975.
    Aussillous, P., and Quere, D., “Liquid Marbles,” Nature 411 , 924-927, 2001.
    Aveyard, R., Binks, B. P., Fletcher, P. D. I., and Rutherford, C. E., “Measurement of Contact Angles of Spherical Monodisperse Particles with Surfactant Solutions,” Colloids and Surfaces A 83, 89-98, 1994.
    Aveyard, R., Clint, J. H., Nees, D., and Paunov, V. N., “Compression and Structure of Monolayers of Charged Latex Particles at Air/Water and Octane/Water Inrerfaces,” Langmuir 16, 1969-1979, 2000.
    Badley, R. D., Ford, W. T., McEnroe, F. J., and Assink, R. A., “Surface Modification of Colloid Silica,” Langmuir 6, 792-801, 1990.
    Ballard, C. C., Broge, E. C., Iler, R. K., John, D. S. S., and McWhorter, J. R., “Esterification of the Surface of Amorphous Silica,” J. Phys. Chem. 65, 20-25, 1961.
    Bandyopadhyay, A., De Sarkar, M., and Bhowmick, A. K., “Poly(vinyl alcohol)/Silica Hybrid Nanocomposites by Sol-Gel Technique: Synthesis and Properties,” J. Mater. Sci. 40, 5233-5241, 2005.
    Bastani, B., and Fernandes, D., “Intellectual Property Rights in Nanotechnology,” Thin Solid Films 420, 472-477, 2002.
    Bergeron, B., and Langevin, D., “Monolayer Films of Poly(dimethylsiloxane) on Aqueous,” Macromolecules 29, 306-312, 1996.
    Bogush, G. H., and Zukoski, C. F., “Studies of the Kinetics of Precipitation of Uniform Silica Particles through the Hydrolysis and Condensation of Silicon Alkoxides,” J. Colloid Interface Sci. 142, 1-18, 1991.
    Burger, A., Leonhard, H., Rehage, H., Wagner, R., and Schwoerer, M., “Ultrathin Cross-Linked Membranes at the Interface Between Oil and Water,” Angew. Makromol. Chem. 202, 31-34, 1993.
    Cao, L. X., Wan, H. B., Huo, L. H., and Xi, S. Q., “A Novel Method for Preparing Ordered SnO2/TiO2 Alternate Nanoparticulate Films,” J. Colloid Interfaces Sci. 244, 97-101, 2001.
    Caruso, F., and Möhwald, H., “Preparation and Characterization of Ordered Nanoparticleand Polymer Composite Multilayers on Colloids,” Langmuir 15, 8276-8281, 1999.
    Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R., and Yeh, M. C., “Effect of Water Content in Solvent on the Critical Temperature in the Formation of Self-Asembled Hexadeyltrichlorosilane Monolayers on Mica,” Chem. Phys. Lett. 346, 241-245, 2001.
    Chen, Y., Zhou, S., Yang, H., and Wu, L., “Structure and Properties of Polyurethane/Nanosilica Composites,” J. Appl. Polym. Sci. 95, 1032-1039, 2005.
    Chu, L., Daniels, M. W., and Francis, L. F., “Use of (Glycidoxypropyl)Trimethoxysilane as a Binder in Colloidal Silica Coatings ,” Chem. Mater. 9, 2577-2582, 1997.
    Clint, J. H., and Taylor, S. P., “Particle Size and Interparticle Forces of Overbased Detergents: a Langmuir Trough Study,” Colloids and surfaces 65, 61-67, 1992.
    Collier, C. P., Saykally, R. J., Shiang, J. J., Henrich, S. E., and Heath, J. R., “Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition,” Science 277, 1978-1981, 1997.
    Deák, A., Székely, I., Kálmán, E., Keresztes, Zs., Kovács, A. L., and Hórvölgyi, Z., “Nanostructure Silica Langmuir-Blodgett Films with Antireflective Properties Prepared on Glass Substrates,” Thin Solid Films 484, 310-317, 2005.
    Ding, A., and Goedel, W. A., “Experimental Investigation of Particle-Assisted Wetting,” J. Am. Chem. Soc. 128, 4930-4931, 2006.
    Ding, A., Binks, B. P., and Goedel, W. A., “Influence of Particle Hydrophobicity on Particle-Assisted Wetting,” Langmuir 21, 1371-1376, 2005.
    Eiichi, M., Daisuke, N., Yoshio, K., and Mikio, K., “Solvent Effects on Particles Formation in Hydrolysis of Tetraethylorthosilicate,” J. Sol-Gel Sci. Technol. 35, 197-201, 2005.
    Evans, S. D., Johnson, S. R., Cheng Y. L., and Shen, T., “Vapour Sensing Using Hybrid Organic-Inorganic Nanostructured Materials,” J. Mater. Chem. 10, 183-188, 2000.
    Hagfeldt, A., and Grätzel, M., “Molecular Photovoltaics,” Acc. Chem. Res. 33, 269-277, 2000.
    Han, D. I., Han, H. J., Park H.-W., and Koo, S. M., “Composite Silica Particles Using a Mixture of Organosilane Monomers,” J. Sol-Gel Sci. Technol. 32, 47-51, 2004.
    Hansen, P. H. F., and Bergström, L., “Perikinetic Aggregation of Alkoxylated Silica Particles in Two Dimensions,” J. Colloid Interface Sci. 218, 77-87, 1999.
    Heriot, S. Y., Pedrosa, J.-M., Camacho, L., and Richardsion, T. H., “Langmuir Monolayer Properties of 4-Methylbenzenethiol Capped Gold Nanoparticles,” Materials Science and Engineering C 26, 154-162, 2006.
    Horozov, T. S., Aveyard, R. Clint, J. H., and Binks, B. P., “Order-Disorder Transition in Monolayers of Modified Monodisperse Silica Particles at the Octane-Water Interface,” Langmuir 19, 2822-2829, 2003.
    Hórvölgyi, Z., Nemeth, S., and Fendler, J. H., “Monoparticulate Layers of Silanized Glass Spheres at the Water-AirInterface: Particle-Particle and Particle-Subphase Interactions,” Langmuir 12, 997-1004, 1996.
    Hottle, J.R., Deng, J., Kim, H. J., Farmer-Creely, C. E., Viers, B. D., and Esker, A. R., “Blends of Amphiphilic Poly(dimethylsiloxane) and Nonamphiphilic Octaisobutyl-POSS at the Air/Water Interface,” Langmuir 21, 2250-2259, 2005.
    Huang, H. H., Yan,F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., Oh, P. S., and Tang, S. H., “Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles,” Langmuir 13, 172-175, 1997.
    Iakovenko, S. A., Trifonov, A. S., Mamedov, A., Nagesha, D. K., Hanin, V. V., Soldatov, E. C., and Kotov, N. A., “One- and Two-Dimensional Arrays of Magnetic Nanoparticles by the Langmuir-Blodgett Technique,” Adv. Mater. 11, 388-392, 1999.
    Jesionowski, T., and Krysztafkiewicz, A., “Influence of Silane Coupling Agents on Surface Properties of Precipitated Silica,” Appl. Surf. Sci. 172, 18-32, 2001.
    Kampes, A., and Tieke, B., “Self-Assembly of Carboxylaed Latex Particles at Charged Surfaces: Influences of Preparation Conditions on the State of Order of the Monolayers,” Materials Science and Engineering C 8-9, 195-204, 1999.
    Kang, Y. S., , Risbud, S., Rabolt, J., and Stroeve, P., “Brewster Angle Microscopy Study of a Magnetic Nanoparticle/Polymer Complex at the Air/Water Interface,” Langmuir 12, 4345-4349, 1996.
    Kim, H.-J., Deng, J., Lalli, J. H., Riffle, J. S., Viers, B.D., and Esker, A. R., “Blends of Amphiphilic PDMS and Trisilanolisobutyl-POSS at the Air/Water Interface” Marcomolecules 37, 4900-4908, 2004.
    Kondo, M., Shinozaki, K., Bergstrom, L., and Mizutani, N., “Preparation of Colloidal Monolayers of Alkoxylated Silica Particles at the Air-Liquid Interface,” Langmuir 11, 394-397 1995
    Kurth, D. G., Lehmann, P., and Lesser, C., “Engineering the Surface Chemical Properties of Semiconductor Nanoparticles: Surfactant-Encapsulated CdTe-Slusters,” Chem. Commun. 11,949-950, 2000.
    Lewis, L. N. “Chemical Catalysis by Colloids and Clusters,” Chem. Rev. 93, 2693-2730, 1993.
    Lu, Y., Liu, G. L., and Lee, L. P., “High-Density Silver Nanoparticle Film with Temperature-Controllable Interparticle Spacing for a Tunable Surface Enhanced Raman Scattering Substrate,” Nano Lett. 5, 5-9, 2005.
    Mann, E. K. and Langevin, D., “Poly(dimethysiloxane) Molecular Layers at the Surface of Water and of Aqueous Surfactant Soltions” Langmuir 7, 1112-1117, 1991.
    Mann, E. K., Lee, L. T., Hénon, S., Langevin, D., and Meunier, J., “Polymer-Surfactant Films at the Air-Water Interface. 1. Surface Pressure, Ellipsometry, and Microscopic Studies,” Macromolecules 26, 7037-7045, 1993.
    Marinova, K. G., Denkov, N. D., Branlard, P., Giraud, Y., and Deruelle, M., “Optimal Hydrophobicity of Silica in Mixed Oil-Silica Antifoams,” Langmuir 18, 3399-3403, 2002.
    Massé, P., and Ravaine, S., “The Langmuir–Blodgett Technique: A Powerful Tool to Elaborate Multilayer Colloidal Crystals,” Colloids and Surface A: Physicochemical Engineering Aspects 270-271, 148-152, 2005.
    Matakef, S., Suratwala, T., Roncone, R. L., Boulton, J. M., Teowee, G., and Uhlmann, D.R., “Processing and Optical-Properties of Inorganic-Organic Hybrids (Polycerams) .1. Mpeou-Based Wave-Guides,” J. Non-Cryst. Solids 178, 31-36, 1994a.
    Matakef, S., Suratwala, T., Roncone, R. L., Boulton, J. M., Teowee, G., and Uhlmann, D. R., “Processing and Optical-Properties of Inorganic-Organic Hybrids (Polycerams) .2. PDMS-Based Wave-Guides,” J. Non-Cryst. Solids 178, 37-43, 1994b.
    Mate, M., Fendler, J. H., Ramsden, J. J., Szalma, J., and Hórvölgyi, Z., “Eliminating Surface Pressure Gradient Effects in Contact Angle Determination of Nano- and Microparticles using a Film Balance,” Langmuir 14, 6501-6504, 1998.
    McGovern, M. E., Kallury, K. M. R., and Thompson, M., “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,” Langmuir 10, 3607-3614, 1994.
    Mertens, G., and Fripiat, J. J., “The Methanol-Silica Gel System,” J. Colloid Interfaces Sci. 42, 169-180, 1973.
    Muramatsu, K., Takahashi, M., Tajima, K., and Kobayashi, K., “Two-Dimensional Assemblies of Colloidal SiO2 and TiO2 Particles Prepared by the Langmuir–Blodgett Technique,” J. Colloid Interfaces Sci. 242, 127-132, 2001.
    Naumann, C. A., Brooks, C.F., Wiyatno, W., Knoll, W., Fuller, G. G., and Frank, C. W., “Rheological Properties of Lipopolymer-Phospholipid Mixtures at the Air-Water Interface: A Novel form of Two-Dimensional Physical Gelation,” Macromolecules 34, 3024-3032, 2001.
    Ohno, K., Morinaga, T., Koh, K., Tsujii, Y., and Fukuda, T., “Synthesis of Monodisperse Silica Particles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization,” Macromolecules 38, 2137-2142, 2005.
    O’Regan, B., and Grätzel, M., “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353, 737-740, 1991.
    Ossenkamp, G. C., Kemmitt, T., and Johnston, J. H., “Toward Functionalized Surfaces Through Surface Esterification of Silica,” Langmuir 18, 5749-5754, 2002.
    Ossenkamp, G. C., Kemmitt, T.,and Johnston, J. H., “New Approaches to Surface-Alkoxylated Silica with Increased Hydrolytic Stability,” Chem. Mater. 13, 3975-3980, 2001.
    Paunov, V. N., “Novel Method for Determining the Three-Phase Contact Angle of Colloid Particles Adsorbed at Air-Water and Oil-Water Interfaces,” Langmuir 19, 7970-7976, 2003.
    Peter, H. F. H., and Lennart, B., “Perikinetic Aqqregation of Alkoxylated Silica Particles in Two Dimensions,” J. Colloid Interface Sci. 218, 77-87, 2005.
    Pham, T., Jackson, J. B., Halas, N. J., and Lee, T. R., “Prepparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayer,” Langmuir 18, 4915-4920, 2002.
    Plueddeman, E. P., “Silane Coupling Agents”, Plenum Press: New York, 1991.
    Posthumus, W., Magusin, P .C. M. M., Brokken-Zijp, J. C. M., Tinnemans, A. H. A., and Van Der Linde, R., “Surface Modification of Oxidic Nanoparticles Using 3-Methacryloxypropyltrimethoxysilane,” J. Colloid Interface Sci. 269, 109-116, 2004.
    Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K., and Makino, K., “A Novel Method for Synthesis of Silica Nanoparticles,” J. Colloid Interface Sci. 289, 125-131, 2005.
    Reculusa, S., and Ravaine, S., “Synthesis of Colloidal Crystals of Controllable Thickness through the Langmuir-Blodgett Technique,” Chem. Mater. 15, 598-605, 2003.
    Roberts, G., “Langmuir-Blodgett Films, ” Plenum Press: New York, 1990.
    Sastry, M., Patil, V., Mayya, K. S., Paranjape, D. V., Singh, P., and Sainkar, S. R., “Organization of Polymer-Capped Platinum Colloidal Particles at the Air-Water Interface,” Thin Solid Films 324, 239-244, 1998.
    Satoh, T., Akitaya, M., Konno, M., and Saito, S., “Particles Size Distributions Produced by Hydrolysis and Condensation of Tetraethylorthosilicate,” J. Chem. Eng. Japan. 30, 759-762, 1997.
    Schuller, H., “Modellversuche zur Spreitung von Kolloid-Particeln,” Kolloid-Z. 216, 380-383, 1968.
    Shan, J., Nuopponen, M., Jiang, H., Viitala, T., Kauppinen, E., Kontturi, K. S., and Tenhu, H., “Amphiphilic Gold Nanoparticles Grafted with Poly(N-isopropylacrylamide) and Polystyrene,” Macromolecules 38, 2918-2926, 2005.
    Sheppard, E., and Tcheurekdjian, N., “Monolayer Studies: Ⅳ. Surface Films of Emulsion Latex Particles,” J. Colloid Interface Sci. 28, 481-486, 1968.
    Shimizu, Y., Kawanabe, K., Takao, Y., and Egashira, M., “Monolayer Packing of Submicrometer Ceramic Spheres by Employing a Langmuir-Blodgett Film of Dicarboxylic Acid,” J. Am. Ceram. Soc. 84, 301-306, 2001.
    Stöber, W., and Fink, A., “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” J. Colloid Interface Sci. 26, 62-69, 1968.
    Tolnai, G., Csempesz, F., Kabai-Faix, M., Kálmán, E., Keresztes, Z., Kovács, A. L., Ramsden, J. J., and Hórvölgyi, Z., “Preparation and Characterization of Surface-Modified Silica-Nanoparticles,” Langmuir 17, 2683-2687, 2001.
    Ujihara, M., Orbulescu, J., Imae, T., and Leblanc, R. M., “Film Structures of Poly(Amido Amine) Dendrimers with an Azacrown Core and Long Alkyl Chain Spacers on Water or Ag Nanoparticle Suspension,” Langmuir 21, 6846-6854, 2005.
    Utsugi, H., Horikoshi, H., and Matsuzawa, T., “Machanism of Esterification of Alcohols with Surface Silanols and Hydrolysis of Surface Esters on Silica Gels,” J. Colloid Interfaces Sci. 50, 154-161, 1975.
    Vansant, E. F., van Der Voort, P. and Vrancken, K. C., “Characterization and Chemical Modification of the Silica Surface” Elsevier: Amsterdam, 1995.
    Wang, G., Pelton, R., Hrymak, A., Shawafaty, N., and Heng, Y. M., “On the Role of Hydrophobic Particles and Surfactants in Defoaming,” Langmuir 15, 2202-2208, 1999a.
    Wang, J., Merino, J., Aranda, P., Galván, J.-C., and Ruiz-Hitzky, E., “Reactive Nanocomposites Based on Pillared Clays,” J. Mater. Chem. 9, 161-168, 1999b.
    Wang, C. Zhang, Y., Dong, L., Fu, L., Bai, Y., Li, T., Xu, J., and Wei, Y., “Two-Dimensional Ordered Arrays of Silicon Nanoparticles,” Chem. Mater. 12, 3662-3666, 2000.
    Wang, W., Gu, B., Liang, L., and Hamilton, W. A., “Adsorption and Structural Arrangement of Cetyltrimethylammonium Cations at the Silica Nanoparticle-Water Interface,” J. Phys. Chem. B 108, 17477-17483, 2004.
    Wolert, E., Setz, S. M., Underhill, R. S., and Duran, R. S., “Meso- and Microscopic Behavior of Spherical Polymer Particles Assembling at the Air-Water Interface,” Langmuir 17, 5617-5677, 2001.
    Xu, H., and Goedel, W. A., “Polymer-Silica Hybrid Monolayers as Precursors for Ultrathin Free-Standing Porous Membranes,” Langmuir 18, 2363-2367, 2002.
    Xu, H., and Goedel, W. A., “Particle-Assisted Wetting,” Langmuir 19, 4950-4952, 2003.
    Xu, Y., Wu, D., Sun, Y. H., Li, Z. H., Dong, B. Z., and Wu, Z. H., “Comparative Study on Hydrophobic Anti-Refective Film from Three Kinds of Methyl-Modified Silica Sols,” J. Non-Cryst. Solids 351, 258-266, 2005.
    Yablonovitch, E., “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059-2062, 1987.
    Yoldas, B. E., and Partlow, D. P., “Wide Spectrum Antireflective Coating for Fused Silica and other Glasses,” Appl. Opt. 23, 1418-1424, 1984.
    Zhang, J. H., Zhan, P., Wang, Z. L., Zhang, W. Y., and Ming, N. B., “Preparation of Monodisperse Silica Paricles With Controllable Size and Shape,” J. Mater. Res. 18, 649-653, 2003.
    Zhang, Y.-H., Li, Y., Fu, S.-Y., Xin, J. H., Daoud, W. A., and Li, L.-F., “Synthesis and Cryogenic Properties of Polyimide-Silica Hybrid Film by Sol-Gel Process,” Polymer 46, 8373-8378, 2005.
    杜仲慶,“二氧化矽粒子LB膜的製備及其表面濕潤性的探討,” 國立成功大學化學工程系碩士論文,2005。
    林維信,“具不同親疏水性二氧化矽粒子在氣/液界面行為及其薄膜結構之研究,” 國立成功大學化學工程系碩士論文,2004。

    下載圖示 校內:2009-07-31公開
    校外:2009-07-31公開
    QR CODE