簡易檢索 / 詳目顯示

研究生: 簡彣珊
Chien, Wen-Shan
論文名稱: 含希夫鹼之三氮唑衍生物的合成及其在化學感測器之應用
A Turn-on Fluorescent Sensor Based on Schiff base-containing Triazole for Zn2+ Detection
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 螢光感測器希夫鹼光誘導電子轉移鋅離子
外文關鍵詞: fluorescent sensor, Schiff base, photo-induced electron transfer, zinc ion
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來螢光感測器應用於對金屬離子的感測越來越受到關注,金屬離子維持人體許多功能的運行,金屬離子在人體中的量過多或過少均會造成危害,因此檢測金屬離子在環境中的含量變得極其重要。相較於其他測定金屬離子的儀器,螢光感測器有許多優點,例如:容易操作、成本低、量測時間短。
    本研究合成出含希夫鹼之三氮唑衍生物S1作為金屬離子螢光感測器
    , S1因光誘導電子轉移(photo-induced electron transfer, PET)的作用,螢光強度低。於乙醇/水(4:1, v/v)中探討對金屬離子的辨識能力及形成錯合物的機制,鋅離子選擇性地增強螢光強度(λem = 465 nm,53倍),造成此現象的原因是S1與鋅離子作用使光誘導電子轉移被抑制,進而造成螢光增強。同時螢光光譜產生藍位移,推測是鋅離子與電子給予imine基(-C=N-)氮原子的強作用,提高了激發態與基態間的能量差。由Job plot實驗得到S1與鋅離子形成錯合物的配位比例是1:3,由濃度滴定實驗得到偵測極限(LOD)是1.23 × 10-7 M。另外,S1與鋅離子形成錯合物造成顏色改變可直接以肉眼辨識,以Na2EDTA測試S1之可逆性,發現螢光強度的回復性佳,且S1在pH = 4.2到pH = 11的環境下皆可有效地感測鋅離子。

    A Schiff base-containing fluorescent sensor S1 was synthesized by Suzuki coupling reaction. The structure is characterized by 1H NMR and MALDI/TOF-MS. S1 was developed for the detection of Zn2+ ion in EtOH-H2O solution. It exhibited weak fluorescence due to photo-induced electron transfer (PET). However, the strong fluorescent emission can be observed in the prescence of Zn2+ (20 eq) with over 53-fold enhancement at 465 nm. Furthermore, the blue shift in emission are attributed to the coordination of imine nitrogen with Zn2+ which increase the band gap between the excited state and ground state. The stoichiometric ratio between S1 and Zn2+ is 1:3 obtained by Job plot. The limit of optical detection (LOD) is 1.23 × 10-7 M derived from titration experiment. The formation of S1-Zn2+ is chemically reversible and the color change could be directly observed by naked eye. In addition, S1 showed good sensing ability under wide pH value ranging from 4.2 to 11.

    摘要 I 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XVI 流程目錄 XVI 第一章 緒論. 1 1-1 前言 1 1-2 感測器介紹 2 1-2-1 化學感測器 2 1-2-2 金屬離子感測 3 1-2-3 螢光感測器 3 1-3 感測器的特性 4 1-3-1靈敏度 4 1-3-2 選擇性 5 1-3-3 可逆性 5 1-3-4 準確性 6 第二章 文獻回顧 7 2-1 螢光原理介紹 7 2-1-1 分子失活過程 8 2-1-2 影響螢光的因素 10 2-2 溶劑效應 14 2-3 螢光感測器的訊號傳遞與作用機制 16 2-3-1光誘導電子轉移 (photoinduced electron transfer,PET) 16 2-3-2光誘導的電荷轉移 (photoinduced charge transfer,PCT) 17 2-3-3光誘導能量轉移(photoinduced energy transfer) 19 2-3-4 激發雙體(excimer)或激發複合體(exciplex)的形成 20 2-3-5 聚集誘導放光(aggregation induced emission) 21 2-3-6 C=N異構化(isomerization) 22 2-3-7激發態分子內質子轉移(excited state intramolecular proton transfer,ESIPT) 23 2-4 希夫鹼(Schiff base) 25 2-4-1 以希夫鹼作為辨識基團之感測器介紹 26 2-5 Suzuki coupling反應 29 2-6 研究動機 30 第三章 實驗內容 31 3-1 實驗裝置與設備 31 3-2 鑑定測量儀器 32 3-3 感測器S1與金屬離子溶液配製 34 3-4 實驗藥品與材料 35 3-5 反應流程 37 3-6 單體合成 39 第四章 結果與討論 42 4-1 單體結構鑑定 42 4-1-1 核磁共振光譜 (NMR) 42 4-1-2基質輔助雷射脫附游離飛行質譜儀 (MALDI/TOF-MS) 44 4-2 光學性質探討 51 4-2-1 感測器S1對不同金屬離子的感測能力 51 4-2-2 光譜變化的機制探討 54 4-2-3 濃度滴定實驗 55 4-2-4 Job plot實驗 57 4-2-5 結合常數計算 58 4-2-6 偵測極限(Detection limit) 59 4-2-7 雙離子實驗 60 4-2-8 感測器S1在不同pH值下的影響 61 4-3 S1-Zn2+錯合物核磁共振圖譜 64 4-4化學感測器S1的可逆性 65 4-5 感測器S1作為Zn2+試紙 67 第五章 結論 68 參考文獻 69

    [1] R. Chitturi, V. R. Baddam, L. Prasad, L. Prashanth, and K. Kattapagari, "A review on role of essential trace elements in health and disease," Journal of Dr. NTR University of Health Sciences, 4, 75-79 (2015).
    [2] S. J. Stohs and D. Bagchi, "Oxidative mechanisms in the toxicity of metal ions," Free Radic Biol Med, 18, 321-336 (1995).
    [3] P. S. Hariharan and S. P. Anthony, "Selective turn-on fluorescence for Zn2+ and Zn2+ + Cd2+ metal ions by single Schiff base chemosensor," Analytica Chimica Acta, 848, 74-79 (2014).
    [4] B. Lukowiak, B. Vandewalle, R. Riachy, J. Kerr-Conte, V. Gmyr, S. Belaich, J. Lefebvre, and F. Pattou, "Identification and purification of functional human β-cells by a new specific zinc-fluorescent probe," Journal of Histochemistry and Cytochemistry, 49, 519-527 (2001).
    [5] E. L. Que, D. W. Domaille, and C. J. Chang, "Metals in neurobiology: probing their chemistry and biology with molecular imaging," Chemical Reviews, 108, 1517-1549 (2008).
    [6] S. J. Lippard and J. M. Berg, Principles of bioinorganic chemistry: University Science Books (1994).
    [7] J. M. Berg and Y. Shi, "The galvanization of biology: a growing appreciation for the roles of zinc," Science, 271, 1081-1085 (1996).
    [8] D. S. Auld, "Zinc coordination sphere in biochemical zinc sites," Biometals, 14, 271-313, (2001).
    [9] Z. Wu, Y. Zhang, J. S. Ma, and G. Yang, "Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement," Inorganic chemistry, 45, 3140-3142 (2006).
    [10] S. Assaf and S.-H. Chung, "Release of endogenous Zn2+ from brain tissue during activity," Nature, 308, 734-736 (1984).
    [11] G. A. Howell, M. G. Welch, and C. J. Frederickson, "Stimulation-induced uptake and release of zinc in hippocampal slices," Nature, 308, 736-738 (1984).
    [12] K. Cammann, U. Lemke, A. Rohen, J. Sander, H. wilken, B. Winter,"Chemical sensors and biosensors ― principles and applications," Angewandte Chemie International Edition in English, 30, 516-539 (1991).
    [13] A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson, A. J. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, "Signaling Recognition Events with Fluorescent Sensors and Switches," Chemical Reviews, 97, 1515-1566 (1997).
    [14] B. Valeur and I. Leray, "Design principles of fluorescent molecular sensors for cation recognition," Coordination Chemistry Reviews, 205, 3-40 (2000).
    [15] W. S. Xia, R. H. Schmehl, C. J. Li, J. T. Mague, C. P. Luo, and D. M. Guldi, "Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling Fluorescence Enhancement (SAFE)," The Journal of Physical Chemistry B, 106, 833-843 (2002).
    [16] A. W. Czarnik, Fluorescent chemosensors for ion and molecule recognition: ACS Publications (1993).
    [17] 蘇筱筑,"含羧基聚芴衍生物的合成,鑑定與其在化學感測器之應用," 成功大學化學工程學系學位論文, 1-87 (2013).
    [18] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Australia: Brooks/Cole : Thomson Learning (2007).
    [19] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US (1983).
    [20] H. G. Löhr and F. Vögtle, "Chromo- and fluoroionophores. A new class of dye reagents," Accounts of Chemical Research, 18, 65-72 (1985).
    [21] Z. H. Kafafi, Organic electroluminescence: CRC press (2005).
    [22] V. May and K. Oliver, Charge and energy transfer dynamics in molecular systems: John Wiley & Sons (2008).
    [23] H. Bouas-Laurent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, and M. H. Riffaud, "Cation-directed photochemistry of an anthraceno-crown ether," Journal of the American Chemical Society, 108, 315-317 (1986).
    [24] J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang, "New sensing mechanisms for design of fluorescent chemosensors emerging in recent years," Chem Soc Rev, 40, 3483-3495 (2011).
    [25] S. W. Thomas, G. D. Joly, and T. M. Swager, "Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers," Chemical Reviews, 107, 1339-1386 (2007).
    [26] K. H. Schweikart, M. Hanack, L. Lüer, and D. Oelkrug, "Synthesis, Absorption and Luminescence of a New Series of Soluble Distyrylbenzenes Featuring Cyano Substituents at the Peripheral Rings," European Journal of Organic Chemistry, 2, 293-302 (2001).
    [27] C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proceedings of the National Academy of Sciences, 100, 6297-6301 (2003).
    [28] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, "Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole," Chemical Communications, 18, 1740-1741 (2001).
    [29] G. Yang, F. Morlet-Savary, Z. Peng, S. Wu, and J.-P. Fouassier, "Triplet-triplet absorption of 2-(2-hydroxyphenyl) benzoxazole (HBO) in polar solvents," Chemical Physics Letters, 256, 536-542 (1996).
    [30] Z. Li and S. Wu, "The effect of molecular structure on the photophysical behavior of substituted styryl pyrazine derivatives," Journal of Fluorescence, 7, 237-242 (1997).
    [31] P. Wang and S. Wu, "Spectroscopy and photophysics of bridged enone derivatives: effect of molecular structure and solvent," Journal of Photochemistry and Photobiology A: Chemistry, 86, 109-113 (1995).
    [32] J.-S. Wu, W.-M. Liu, X.-Q. Zhuang, F. Wang, P.-F. Wang, S.-L. Tao, X.-H. Zhang, S.-K. Wu, and S.-T. Lee, "Fluorescence Turn On of Coumarin Derivatives by Metal Cations:  A New Signaling Mechanism Based on C=N Isomerization," Organic Letters, 9, 33-36 (2007).
    [33] A. Gupta and N. Kumar, "A review of mechanisms for fluorescent 'turn-on' probes to detect Al3+ ions," RSC Advances, 6, 106413-106434 (2016).
    [34] T. Mahmud, R. Rehman, A. Gulzar, A. Khalid, J. Anwar, U. Shafique, Z. Waheed uz, and M. Salman, "Synthesis, characterization and study of antibacterial activity of enaminone complexes of zinc and iron," Arabian Journal of Chemistry, 3, 219-224 (2010).
    [35] C. J. Pedersen, "Cyclic polyethers and their complexes with metal salts," Journal of the American Chemical Society, 89, 2495-2496 (1967).
    [36] A. Kajal, S. Bala, S. Kamboj, N. Sharma, and V. Saini, "Schiff bases: a versatile pharmacophore," Journal of Catalysts, 2013, 1-14 (2013).
    [37] Z. Xu, J. Yoon, and D. R. Spring, "Fluorescent chemosensors for Zn2+," Chemical Society Reviews, 9, 1996-2006 (2010).
    [38] S. Mukherjee and S. Talukder, "A reversible luminescent quinoline based chemosensor for recognition of Zn2+ ions in aqueous methanol medium and its logic gate behavior," Journal of Luminescence, 177, 40-47 (2016).
    [39] Y. Zhou, H. N. Kim, and J. Yoon, "A selective ‘Off–On’ fluorescent sensor for Zn2+ based on hydrazone–pyrene derivative and its application for imaging of intracellular Zn2+," Bioorganic & Medicinal Chemistry Letters, 20, 125-128 (2010).
    [40] Y. W. Choi, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, G. R. You, and C. Kim, "A single schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III)," Sensors and Actuators B: Chemical, 194, 343-352 (2014).
    [41] A. K. Mahapatra, S. K. Manna, C. D. Mukhopadhyay, and D. Mandal, "Pyrophosphate-selective fluorescent chemosensor based on ratiometric tripodal-Zn(II) complex: Application in logic gates and living cells," Sensors and Actuators B: Chemical, 200, 123-131 (2014).
    [42] Z. Dong, Y. Guo, X. Tian, and J. Ma, "Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behaviour," Journal of Luminescence, 134, 635-639 (2013).
    [43] C. Gao, X. Jin, X. Yan, P. An, Y. Zhang, L. Liu, H. Tian, W. Liu, X. Yao, and Y. Tang, "A small molecular fluorescent sensor for highly selectivity of zinc ion," Sensors and Actuators B: Chemical, 176, 775-781 (2013).
    [44] D. Sarkar, A. Pramanik, S. Jana, P. Karmakar, and T. K. Mondal, "Quinoline based reversible fluorescent ‘turn-on’ chemosensor for the selective detection of Zn2+: Application in living cell imaging and as INHIBIT logic gate," Sensors and Actuators B: Chemical, 209, 138-146 (2015).
    [45] W. K. Dong, S. F. Akogun, Y. Zhang, Y.-X. Sun, and X. Y. Dong, "A reversible “turn-on” fluorescent sensor for selective detection of Zn2+," Sensors and Actuators B: Chemical, 238, 723-734 (2017).
    [46] N. Miyaura and A. Suzuki, "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds," Chemical Reviews, 95, 2457-2483 (1995).
    [47] C. Amatore, A. Jutand, and G. Le Duc, "Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki–Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base," Chemistry – A European Journal, 17, 2492-2503 (2011).
    [48] R. Varghese, S. J. George, and A. Ajayaghosh, "Anion induced modulation of self-assembly and optical properties in urea end-capped oligo (p-phenylenevinylene) s," Chemical Communications, 593-595 (2005).
    [49] S. Dalapati, M. A. Alam, S. Jana, and N. Guchhait, "Naked-eye detection of F− and AcO− ions by Schiff base receptor," Journal of Fluorine Chemistry, 132, 536-540 (2011).
    [50] S. Erdemir, O. Kocyigit, and S. Malkondu, "Fluorogenic recognition of Zn2+, Al3+ and F− ions by a new multi-analyte chemosensor based bisphenol a-quinoline," Journal of fluorescence, 25, 719-727 (2015).
    [51] D. A. Deranleau, "Theory of the measurement of weak molecular complexes. II. Consequences of multiple equilibria," Journal of the American Chemical Society, 91, 4050-4054 (1969).
    [52] M. Shellaiah, Y. H. Wu, and H. C. Lin, "Simple pyridyl-salicylimine-based fluorescence “turn-on” sensors for distinct detections of Zn2+, Al 3+ and OH− ions in mixed aqueous media," Analyst, 138, 2931-2942 (2013).
    [53] W. Li, X. Tian, B. Huang, H. Li, X. Zhao, S. Gao, J. Zheng, X. Zhang, H. Zhou, and Y. Tian, "Triphenylamine-based Schiff bases as the High sensitive Al3+ or Zn2+ fluorescence turn-on probe: mechanism and application in vitro and in vivo," Biosensors and Bioelectronics, 77, 530-536 (2016).
    [54] Y. P. Kumar, P. King, and V. Prasad, "Zinc biosorption on Tectona grandis Lf leaves biomass: equilibrium and kinetic studies," Chemical engineering journal, 124, 63-70 (2006).
    [55] C.-H. Hung, G.-F. Chang, A. Kumar, G.-F. Lin, L.-Y. Luo, W.-M. Ching, and E. W.-G. Diau, "m-Benziporphodimethene: a new porphyrin analogue fluorescence zinc (II) sensor," Chemical Communications, 978-980 (2008).
    [56] H. Chen, W. Gao, M. Zhu, H. Gao, J. Xue, and Y. Li, "A highly selective OFF–ON fluorescent sensor for zinc in aqueous solution and living cells," Chemical Communications, 46, 8389-8391 (2010).
    [57] T.-T. Zhang, X.-P. Chen, J.-T. Liu, L.-Z. Zhang, J.-M. Chu, L. Su, and B.-X. Zhao, "A high sensitive fluorescence turn-on probe for imaging Zn 2+ in aqueous solution and living cells," RSC Advances, 4, 16973-16978 (2014).
    [58] S. Lee, J. H. Lee, T. Pradhan, C. S. Lim, B. R. Cho, S. Bhuniya, S. Kim, and J. S. Kim, "Fluorescent turn-on Zn2+ sensing in aqueous and cellular media," Sensors and Actuators B: Chemical, 160, 1489-1493 (2011).

    下載圖示 校內:2019-08-01公開
    校外:2020-08-01公開
    QR CODE