簡易檢索 / 詳目顯示

研究生: 魏連晉
Wei, Lien-Chin
論文名稱: 微流道熱沉孔內奈米流體之強制對流熱傳實驗研究
Heat Transfer Experiment on Forced Convection of a Nanofluid in a Micro-Channel Heat Sink
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 微流道熱沉孔強制對流奈米流體
外文關鍵詞: Forced convection, Micro-channel heat sink, Nanofluid
相關次數: 點閱:118下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在以實驗量測的方式探討奈米流體流經一微流道熱沉時強制對流熱傳遞特性。實驗所用的微流道熱沉係在紅銅方塊上加工成形,具有25條長度 、寬度 、深度 的矩形流道。本文的奈米流體為純水和氧化鋁( )奈米微粒混合而成。本實驗係針對微粒體積濃度 和 之奈米流體其雷諾數分別介於332 1641與371 938條件下測得微流道熱沉之磨擦因子、紐賽數、及熱阻等結果。實驗結果顯示,以奈米流體取代純水,可顯著提升微流道熱沉之對流熱傳係數,進而有效地降低其熱阻。同時,奈米流體流經微流道熱沉孔壓降相較於純水僅呈現些微上揚。

    In the present study, the forced convection heat transfer characteristics of a micro-channel heat sink were studies experimentally to explore efficacy of using alumina-water nanofluid as the cooling fluid in addition to water. The heat sink was fabricated from copper and consists of an array of 25 rectangular micro-channels, each of which has a width of 283 m, a depth of 800 m, and a length of 50 mm. The friction factor, Nusselt numbers, and thermal resistances for the micro-channel heat sink with a uniform base temperature were determined for the Reynolds number ranged from 332 to 1641 and 371 to 938 for the nanofluid containing alumina particle fraction of 1 vol.% and 2 vol.%, respectively. Experimental results obtained show that using the nanofluid, in comparison with those of water, can enhance the heat transfer rate and thus reduce the thermal resistance of the micro-channel heat sink. Meanwhile, the friction factor the micro-channel sink was found slightly increased for using the nanofluid.

    摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 符號說明 X 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 研究目的 7 1-4 論文架構 7 第二章 實驗方法及資料處理 9 2-1 實驗設備 9 2-2 實驗方法 16 2-3 工作流體熱物性質 19 2-4 數據處理 20 2-5 實驗不準度分析 31 第三章 結果與討論 34 3-1 純水實驗結果 34 3-2 奈米流體實驗結果 40 第四章 結論與未來展望 50 4-1 結論 50 4-2 未來展望 50 參考文獻 52 附錄A 數據處理表格(雷諾數與摩擦因子) 55 附錄B 數據處理表格(熱損估算與紐賽數) 64 附錄C 奈米流體熱物性質 70 附錄D 不準度分析之計算 72 附錄E 週邊實驗設備 76 自述 84

    Agostini B., Bontemps A., and Thonon B., “Effects of geometrical and thermophysical parameters on heat transfer measurements in small-diameter channels,” Heat Transfer Engineering, Vol. 27, pp. 14-24, 2006.
    Barba A., Musi B., and Spiga M., “Performance of a polymeric heat sink with circular microchannels,” Applied Thermal Engineering, Vol. 26, pp. 787-794, 2006.
    Beckwith T. G. and Marangoni R. D., Mechanical Measurements, 4th ed., Addison-Wesley, USA, pp.15-36, 1990.
    Bejan A., Convection Heat Transfer, 3rd ed., John Wiley & Sons, U.S.A. , pp. 103, 2004.
    Buongiorno J., “Convective transport in nanofluids,” ASME J. Heat Transfer, Vol. 128, pp. 240-250, 2006.
    Chein R. and Huang G., “Analysis of microchannel heat sink performance using nanofluids,” Applied Thermal Engineering, Vol. 25, pp. 3104-3114, 2005.
    Chein R.and Chuang J., “Experimental microchannel heat sink performance studies using nanofluids,” Int. J. Thermal Sciences, Vol. 46, pp. 57-66, 2007.
    Daungthongsuk W. and Wongwises S., “A critical review of convective heat transfer of nanofluids,” Renewable & Sustainable Energy Reviews, Vol. 11, pp. 797-817, 2007.
    Incropera F. P. and DeWitt D. P. , Fundamentals of heat and mass transfer, 5th ed., John Wiley & Sons, U.S.A., 2002.
    Jang S. P. and Choi S. U. S., “Cooling performance of a microchannel heat sink with nanofluids,” Applied Thermal Engineering, Vol. 26, pp. 2457-2463, 2006.
    Lee P. S., Garimella S. V., and Liu D., “Investigation of heat transfer in rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 48, pp. 1688-1704, 2005.
    Lee J. and Mudawar I., “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transfer, Vol. 50, pp. 452- 463, 2007.
    Morini G. L., Lorenzini M., Salvigni S., and Spiga M., “Thermal performance of silicon micro heat-sinks with electrokinetically-driven flows, ” Int. J. Thermal Sciences, Vol. 45, pp. 995-961, 2006.
    Peng X. F. and Peterson G. P., “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 265-283, 1994.
    Peng X. F., Wang B. X., Peterson G. P., and Ma H. B., “Experimental investigateon of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 38, No.1, pp.127-137, 1995.
    Peng X. F. and Peterson G. P., “Convective heat transfer and flow friction for water flow in microchannel structures,” Int. J. Heat Mass transfer, Vol.39, No. 12, pp. 2599-2608, 1996.
    Qu W. and Mudawar I., “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” Int. J. Heat Mass Transfer, Vol. 45, pp. 2549-2565, 2002.
    Shen S., Xu J. L., Zhou J. J., and Chen Y., “Flow and heat transfer in microchannels with rough wall surface,” Energy Conversion & Management, Vol. 47, pp. 1311-1325, 2006.
    Steinke M. E. and Kandlikar S. G., “Single-phase liquid friction in microchannels,” Int. J. Thermal Sciences, Vol. 45, pp. 1073-1083, 2006.
    Tsai T. H. and Chein R., “Performance analysis of nanofluid-cooled microchannel heat sinks,” Int. J. Heat Fluid Flow, Article in press, 2007.
    Tuckerman D. B. and Pease R. F. W., “High-performance heat sinking for VLSI,” IEEE Electronic Device letters, Vol. EDL-2, No. 5, 1981.
    Wang X. Q. and Mujumdar A. S., “Heat transfer characteristics of nanofluids: a review,” Int. J. Thermal Sciences, Vol. 46, pp. 1-19, 2007.
    Zhang H. Y., Pinjala D., Wong T. N., Toh K. C., and Joshi Y. K., “Single-phase liquid cooled microchannel heat sink for electronic packages,” Applied Thermal Engineering, Vol. 25, pp. 1472-1487, 2005.
    Zhang H. Y., Pinjala D., Joshi Y. K., Wong T. N., Toh K. C., and Iyer M. K., “Fluid flow and heat transfer in liquid cooled foam heat sinks for electronic packages,” IEEE Transactions On Components And Packaging Technologies , Vol. 28, No. 2, pp. 272-280, 2005.

    下載圖示 校內:立即公開
    校外:2007-08-06公開
    QR CODE