| 研究生: |
邱竑閔 Chiu, Hung-Min |
|---|---|
| 論文名稱: |
應用微擾方法進行嵌入式單層奈米碳管之三維靜力分析 A Three-Dimensional Static Analysis of Embedded Single-Walled Carbon Nanotubes Using the Perturbation Method |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | Eringen的非局部彈性力學組成關係 、單層奈米碳管 、靜力 、3D非局部彈性力學理論 、Pasternak模型 、微擾方法 |
| 外文關鍵詞: | Eringen’s nonlocal constitutive relations, single-walled carbon nanotubes, static, the 3D nonlocal elasticity theory, the Pasternak model, the perturbation method |
| 相關次數: | 點閱:129 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文推衍三維(three-dimensional, 3D)漸近非局部彈性力學理論,對嵌入在彈性介質中之簡支承單層奈米碳管(single-walled carbon nanotube, SWCNT)於內外表面受橫向法向荷載作用,進行其靜力分析。文中利用Eringen的非局部彈性力學組成關係,將微小尺度效應納入考慮,用以檢驗SWCNT靜力行為。文中SWCNT及其周圍基礎之間的相互作用分別以Winkler型或Pasternak型之模型來模擬。理論推衍結果顯示二維(two-dimensional, 2D)非局部古典殼理論(classical shell theory, CST)是3D非局部彈性力學理論的一階近似,其結果可以逐階修正,以階級式且一致的方式漸近地逼近精確的3D非局部彈性力學解。文中也對與嵌入式SWCNT靜力行為有關之參數進行研究,其中包括縱橫比、SWCNT周圍介質的勁度與剪力模數以及非局部參數。
A three-dimensional (3D) asymptotic local elasticity theory is reformulated for the static analysis of a simply-supported, single-walled carbon nanotube (SWCNT) embedded in an elastic medium under a transverse normal load at its inner and outer surfaces. Eringen’s nonlocal constitutive relations are used to account for the small length scale effects in the formulation examining the static behavior of the SWCNT. The interaction between the SWCNT and its surrounding foundation is modelled as either a Winkler-type or a Pasternak-type model. The two-dimensional (2D) nonlocal classical shell theory (CST) is derived as a first-order approximation of the 3D nonlocal elasticity theory. The 2D nonlocal CST solutions can be modified order-by-order to asymptotically approach the exact 3D nonlocal elasticity solutions in a hierarchic and consistent manner. A parametric study related to some effects on the static behavior of the embedded SWCNT is undertaken, including the aspect ratio, the stiffness and shear modulus of the surrounding medium of the SWCNT, and the nonlocal parameter.
1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-58. DOI: 10.1038/354056a0.
2. Wang Q, Arash B. A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci. 2014; 82: 350-360. DOI: 10.1016/j.commatsci.2013.10.010.
3. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR. A review on carbon nanotubes and graphenes as fillers in reinforced polymer nanocomposites. J Industrial Eng Chem. 2015; 21: 11-25. DOI: 10.1016/j.jiec.2014.03.022.
4. Khare R, Bose S. Carbon nanotube based composites-A review. J Miner Mater Character Eng. 2005; 4(1): 31-46. DOI: 10.4236/jmmce.2005.41004.
5. Ng KW, Lam WH, Pichiah S. A review on potential applications of carbon nanotubes in marine current turbines. Renewable and Sustainable Energy Reviews. 2013; 28: 331-339. DOI: 10.1016/j.rser.2013.08.018.
6. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Current Opinion Chem Biology. 2005; 9(6): 674-679. DOI: 10.1016/j.cbpa.2005.10.005.
7. Casas CDL, Li W. A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources. 2012; 208: 74-85. DOI: 10.1016/j.jpowsour.2012.02.013.
8. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008; 46(6): 833-840. DOI: 10.1016/j.carbon.2008.02.012.
9. Eringen AC. Nonlocal polar elastic continua. Int J Eng Sci. 1972; 10(1): 1-16. DOI: 10.1016/0020-7225(72)90070-5.
10. Eringen AC. Nonlocal Continuum Field Theories. New York: Springer-Verlag; 2002.
11. Eringen AC, Edelen DGB. On nonlocal elasticity. Int J Eng Sci. 1972; 10(3): 233-248. DOI: 10.1016/0020-7225(72)90039-0.
12. Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci. 2007; 45(2-8): 288-307. DOI: 10.1016/j.ijengsci.2007.04.004.
13. Thai, HT. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci. 2012; 52: 56-64. DOI: 10.1016/j.ijengsci.2011.11.011.
14. Thai HT, Vo TP. A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci. 2012; 54: 58-66. DOI: 10.1016/j.ijengsci.2012.01.009.
15. Reddy JN, Pang SD. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys. 2008; 103: 023511. DOI: 10.1063/1.2833431.
16. Wang Y, Huang K, Zhu X, Lou Z. Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids. 2019; 24(3): 559-572. DOI: 10.1177%2F1081286517750008.
17. Wang Q, Liew KM. Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A. 2007; 363(3): 236-242. DOI: 10.1016/j.physleta.2006.10.093.
18. Ebrahimi F, Barati MR. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur Phys J Plus. 2016; 131: 279. DOI: 10.1140/epjp/i2016-16279-y.
19. Hache F, Challamel N, Elishakoff I. Asymptotic derivation of nonlocal beam models from two-dimensional nonlocal elasticity. Math Mech Solids. 2019; 24(8): 2435-2443. DOI: 10.1177%2F1081286518756947.
20. Arefi M, Pourjamshidian M, Ghorbanpour Arani A. Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories. Eur Phys J Plus. 2018; 133: 193. DOI: 10.1140/epjp/i2018-12015-1.
21. Wu CP, Lai WW. Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions. Compos Struct. 2015; 122: 390-404. DOI: 10.1016/j.compstruct.2014.11.073.
22. Wu CP, Lai WW. Free vibration of an embedded single-walled carbon nanotubes with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. Physica E. 2015; 68: 8-21. DOI: 10.1016/j.physe.2014.12.004.
23. Wu CP, Chen YH, Hong ZL, Lin CH. Nonlinear vibration analysis of an embedded multi-walled carbon nanotube. Adv Nano Res. 2018; 6(2): 163-182. DOI: 10.12989/anr.2018.6.2.163.
24. Wu CP, Lin CH, Wang YM. Nonlinear finite element analysis of a multi-walled carbon nanotube resting on a Pasternak foundation. Mech Adv Mater Struct. 2019; 26(18): 1505-1517. DOI: 10.1080/15376494.2018.1444222.
25. Wu CP, Yu JJ. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Arch Appl Mech. 2019; 89: 1761-1792. DOI: 10.1007/s00419-019-01542-z.
26. Wang KF, Wang BL, Kitamura T. A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech Sin. 2016; 32: 83-100. DOI: 10.1007/s10409-015-0508-4.
27. Rafiee R, Moghadam RM. On the modeling of carbon nanotubes: A critical review. Compos Part B. 2014; 56: 435-449. DOI: 10.1016/j.compositesb.2013.08.037.
28. Thai HT, Vo TP, Nguyen TK, Kim SE. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos Struct. 2017; 177: 196-219. DOI: 10.1016/j.compstruct.2017.06.040.
29. Arash B, Wang Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci. 2012; 51(1): 303-313. DOI: 10.1016/j.commatsci.2011.07.040.
30. Strozzi M, Manevitch LI, Pellicano F, Smirnov VV, Shepelev DS. Low-frequency linear vibrations of single-walled carbon nanotbes: Analytical and numerical models. J Sound Vibr. 2014; 333(13): 2936-2957. DOI: 10.1016/j.jsv.2014.01.016.
31. Ghavanloo E, Fazelzadeh SA. Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl Math Modell. 2012; 36(10): 4988-5000. DOI: 10.1016/j.apm.2011.12.036.
32. Ansari R, Arash B. Nonlocal shell model for vibrations of double-walled carbon nanotubes with different boundary conditions. J Appl Mech. 2013; 80(2): 021006. DOI: 10.1115/1.4007432.
33. He XQ, Kitipornchai S, Wang CM, Liew KM. Modelling of van der Walls force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. Int J Solids Struct. 2005; 42(23): 6032-6047. DOI: 10.1016/j.ijsolstr.2005.03.045.
34. Zenkour AM. Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. Eur Phys J Plus. 2018; 133: 196.DOI: 10.1140/epjp/i2018-12014-2.
35. Liew KM, He XQ, Kitipornchai S. Buckling characteristics of embedded multi-walled carbon nanotubes. Proc Royal Soc A. 2005; 461: 3785-3805. DOI: 10.1098/rspa.2005.1526.
36. He XQ, Kitipornchai S, Liew KM. Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction. J Mech Phys Solids. 2005; 53(2): 303-326. DOI: 10.1016/j.jmps.2004.08.003.
37. He XQ, Elsenberger M, Liew KM. The effect of van der Waals interaction modelling on the vibration characteristics of multiwalled carbon nanotubes. J Appl Phys 2006; 100: 124317. DOI: 10.1063/1.2399331.
38. Nayfeh AH. Introduction to Perturbation Techniques. New York, John Wiley & Sons Inc.; 1981.
39. Wu CP, Li WC. Three-dimensional static analysis of nanoplates and graphene sheets by using Eringen’s nonlocal elasticity theory and the perturbation method. CMC-Comput Mater Continua. 2016; 52(2): 73-103.
40. Wu CP, Chi YW. Three-dimensional nonlinear analysis of laminated cylindrical shells under cylindrical bending. Eur J Mech A/Solids. 2005; 24(5): 837-856. DOI: 10.1016/j.euromechsol.2005.04.006.
41. Wu CP, Syu YS. Asymptotic solutions for multilayered piezoelectric cylinders under electromechanical loads. CMC-Comput Mater Continua. 2006; 4(2): 87-108.
42. Wu CP, Tsai YH. Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci. 2007; 45(9): 744-769. DOI: 10.1016/j.ijengsci.2007.05.002.
43. Wu CP, Syu YS. Exact solutions of functionally graded piezoelectric shells under cylindrical bending. Int J Solids Struct. 2007; 44(20): 6450-6472. DOI: 10.1016/j.ijsolstr.2007.02.037.
44. Ye J, Soldatos KP. Three-dimensional stress analysis of orthotropic and cross-ply laminated hollow cylinders and cylindrical panels. Comput Methods Appl Mech Engrg. 1994; 117(3-4): 331-351. DOI: 10.1016/0045-7825(94)90121-X.
45. Ren JG. Analysis of simply-supported laminated circular cylindrical shell roofs. Compos Struct. 1989; 11(4): 277-292. DOI: 10.1016/0263-8223(89)90092-5.
46. Soldatos KP, Hadjigeorgiou VP. Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. J Sound Vibr. 1990; 137(3): 369-384. DOI: 10.1016/0022-460X(90)90805-A.
47. Varadan TK, Bhaskar K. Bending of laminated orthotropic cylindrical shells-an elasticity approach. Compos Struct. 1991; 17(2): 141-156. DOI: 10.1016/0263-8223(91)90067-9.
48. Srinivas S. Analysis of laminated, composite, circular cylindrical shells with general boundary conditions. Washington, NASA TR-R-412; 1974.