| 研究生: |
王又楨 Wang, Yu-Chen |
|---|---|
| 論文名稱: |
利用LLTO穩定薄鋰陽極和高載量硫陰極之鋰硫電池性能提升 Enhancing Lithium–Sulfur Cell Performance with LLTO-Stabilized Thin-lithium Anodes and High-Loading Sulfur Cathodes |
| 指導教授: |
鍾昇恆
Chung, Sheng-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 鋰金屬負極 、固態電解質 、表面塗層 、鈦酸鋰鑭(LLTO) 、鋰硫電池 |
| 外文關鍵詞: | lithium metal anode, solid-state electrolyte, surface coating, lanthanum lithium titanate (LLTO), lithium–sulfur batteries |
| 相關次數: | 點閱:28 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰電池採用高容量鋰金屬作為負極並且實現高能量密度,使其成為商用鋰離子電池的未來發展方向。鋰硫電池因其硫電極高比容量(1675 mA·h g-1) 可以實現高能量密度(2600 W·h kg-1)、成本低廉且環境友好,而成為有吸引力的儲能裝置。此外,硫元素在自然界豐富也有助於可持續性的能源發展。然而,多硫化物中間相的形成會擴散至負極並且腐蝕鋰金屬電極,嚴重影響到電池的循環壽命,除此之外,具備高活性的鋰金屬負極會在循環過程中有不均勻的電鍍和剝鋰,造成電極於電池充放電過時遭遇大幅度體積變化以及非活性鋰的積累,最終導致電池的循環穩定性差和造成低的庫倫效率。為了解決這些問題的存在,通過在負極表面塗覆一層鈦酸鋰鑭(LLTO)固態電解質界面層,藉由其優異的導離子性提供鋰離子穩定的傳輸路徑以誘導鋰的均勻沉積,並且避免負極與多硫化物的接觸藉以提升電池的循環壽命和穩定性。而塗層優異的導電子特性可以使負極與塗層間有良好的電子連接藉以增強電荷轉移反應,使電鍍和剝鋰過程得以迅速。通過不同氧化物漿料比調配出最佳的塗層厚度參數,修飾過的鋰金屬負極在鋰-鋰對稱電池於1 mA·cm-2高面積電流密度和1 mA·h cm-2鋰電鍍面積容量下可以穩定鍍鋰和脫鋰超過2000小時,並且在鋰-銅半電池中展現98%的高庫倫效率以及可以穩定循環超過100次。鋰硫電池採用高硫載量(4 mg cm-2)、低電解液對硫比(10 μL mg-1)和高倍率性能(C/5)下,展現約1056 mA·h g-1最高比電容量和4.2 mA·h cm-2高面積容量,並且能夠穩定循環300次。除此之外,為了能夠降低鋰源的用量,將鋰片減薄並且做負極界面的修飾,在鋰-鋰對稱電池可以展現超過1000小時的穩定鍍鋰和脫鋰,並於鋰硫全電池中實現初始放電容量為890 mA·h g-1以及2.8的低負正容量比,並且在200次循環後庫倫效率維持在98%的優異展現。
With the characteristics of sulfur cathodes’ low cost (two-thirds cheaper than lithium-ion cells) and high theoretical capacity (1675 mA·h g-1), lithium–sulfur cells rise rapidly and have attracted extensive research in academia and industry. The lithium–sulfur battery chemistry involves the conversion reaction between sulfur, lithium polysulfides, and lithium sulfides for a high electrochemical reversibility. However, the reversible conversion of the high-capacity active material faces the high resistance of the sulfur and sulfides that form as the solid-state active materials at the fully charged and discharged states, respectively. During cycling the solid-state active materials covert to liquid-state polysulfides intermediates that easily dissolve in the liquid electrolyte and then irreversibly diffuse out of the cathode and randomly redistribute throughout the cell. These material characteristics lead to the poor utilization of sulfur and the fast capacity fade in a short cycle life. In this research, a thin-film solid-state electrolyte coating is applied on the lithium-metal anode as a conductive protective layer to stabilize the lithium anode and avoid the corrosion of the diffusing polysulfides. Specifically, lithium lanthanum titanate (LLTO) solid-state electrolyte is used as a thin-film coating layer on the lithium metal for the in-situ formation of a conductive coating film. With the adjustment of the amount of LLTO by its weight in the coating paste, the optimal 30 wt% LLTO coating shows a stable lithium plating and stripping reaction for over 2000 hours. The thin-film solid-state electrolyte coating demonstrates the excellent anode and interface stabilities. This allows us to explore the feasibility of such lithium-stabilization technologies for the lithium–sulfur batteries with a high-loading sulfur cathode and a thin lithium anode as a full cell, and to develop the corresponding interface analysis technology.
1. N. Jones, The New Car Batteries that Could Power the Electric Vehicle Revolution, Nature, 2024, 626, 248–251.
2. B. Diouf, The Electric Vehicle Transition, Environ. Sci. Adv., 2024, 3 332–345.
3. Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin, J. Maier, and Y.-G. Guo, Towards Better Li Metal Anodes: Challenges and Strategies, Mater. Today, 2020, 33, 56–74
4. Y. Zhang, Y. Liu, J. Zhou, D. Wang, L. Yan, and C. Yi, 3D Cubic Framework of Fluoride Perovskite SEI Inducing Uniform Lithium Deposition for Air-Stable and Dendrite-Free Lithium Metal Anodes, Chem. Eng. J., 2022, 431, 134266.
5. Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, and G. Wang, Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability, Adv. Mater, 2021, 33, 2003666.
6. L. Yue, X. Wang, L. Chen, D. Shen, Z. Shoa, H. Wu, S. Xiao, W. Liang, Y. Yu, and Y. Li, In Situ Interface Engineering of Highly Nitrogen Rich Triazine-Based Covalent Organic Frameworks for an Ultra-Stable, Dendrite-Free Lithium-Metal Anode, Energy Environ. Sci., 2024, 17, 1117–1131.
7. R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, and F. Wu, Recent Advances and Applications Toward Emerging Lithium–Sulfur Batteries: Working Principles and Opportunities, Energy Environ. Mater., 2022, 5, 777–799.
8. H. Li, S. Ma, J. Li, F. Liu, H. Zhou, Z. Huang, S. Jiao, and Y. Kuang, Altering the Reaction Mechanism to Eliminate the Shuttle Effect in Lithium–Sulfur batteries, Energy Storage Mater., 2020, 26, 203–212.
9. Y.-W. Tian, Y.-J. Zhang, L. Wu, W.-D. Dong, R. Huang, P.-Y. Dong, M. Yan, J. Liu, H. S. H. Mohamed, L.-H. Chen, Y. Li, and B.-L. Su, Bifunctional Separator with Ultra-Lightweight MnO2 Coating for Highly Stable Lithium–Sulfur Batteries, ACS Appl. Mater. Interfaces, 2023, 15, 6877–6887.
10. K. Sun, Y. Fu, T. Sekine, H. Mabuchi, S. Hossain, Q. Zhang, D. Liu, S. Das, D. He, and Y. Negishi, Metal Nanoclusters as a Superior Polysulfides Immobilizer Toward Highly Stable Lithium–Sulfur Batteries, small, 2024, 20, 2304210.
11. Y.-H. Tseng, Y.-C. Lin, Y.-H. Wu, J.-M. Ting, and S.-H, Chung, High-Entropy Oxide/Phase-Inverted Carbon for Enhanced Lithium–Sulfur Batteries, J. Energy Storage, 2023, 68, 107767.
12. Y. Pang, M. Guan, Y. Pan, M. Yian, K. Huang, C. Jiang, A. Xiang, X. Wang, Y. Gong, Y. Xiang, and X. Zhang, Stable Lithium Plating and Stripping Enabled by a LiPON Nanolayer on PP Separator, small, 2022, 18, 2104832.
13. Y. Feng, M. Wang, L. Gao, Z. He, K. Chen, Z. Li, H. He, and Y. Lin, Novel Fast Ionic Conductor Ceramic Composite Separator for High Performance Safe Li-Ion Power Batteries, J. Materiomics., 2022, 8, 1184–1190.
14. X. Wang, K. Xu, J. Guo, Z. Li, S. Liu, L. Sun, J. Zhao, H. Liu, W. Liu, and F. Wang, Boosting Polysulfide Confinement and Redox Kinetics via ZnSe/NC@rGO as Separator Modifier for High-Performance Lithium–Sulfur Batteries, Electrochim. Acta, 2023, 445, 142026.
15. S. Feng, J. Wang, J. Wen, X. Li, Z. Wang, Y. Zeng, and J. Xiao, Improvement of Redox Kinetics of Dendrite-Free Lithium−Sulfur Battery by Bidirectional Catalysis of Cationic Dual-Active Sites, ACS Sustain. Chem. Eng., 2023, 11, 8544–8555.
16. Y. Tian, C. Lin, X. Chen, Z. Yu, R. Xiong, and Q. Zhang, Reversible Lithium Plating on Working Anodes Enhances Fast Charging Capability in Low-Temperature Lithium-Ion Batteries, Energy Storage Mater., 2023, 56, 412–423.
17. C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, and Q. Zhang, Lithium-Anode Protection in Lithium–Sulfur Batteries, Trends Chem., 2019, 1, 693–704.
18. R. Zhang, X. Shen, Y.-T. Zhang, X.-L. Zhong, H.-T. Ju, T.-X. Huang, X. Chen, J.-D. Zhang, and J.-Q. Huang, Dead Lithium Formation in Lithium Metal Batteries, J. Energy. Chem., 2022, 71, 29–35.
19. X. Shen, R. Zhang, X. Chen, X.-B. Cheng, X. Li, and Q. Zhang, The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength, Adv. Energy. Mater., 2020, 10, 1903645.
20. X.-R. Chen, C. Yan, J.-F. Ding, H.-J. Peng, and Q. Zhang, New Insights into ‘‘Dead Lithium” During Stripping in Lithium Metal Batteries, Chem. Eng. J., 2021, 62, 289–294.
21. K.-H. Chen, K. Z. Wood, E. Kazyak, W. S. LePage. A. L. Davis, A. J. Sanchez, and N. P. Dasgupta, Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes, J. Mater. Chem. A, 2017, 5, 11671–11681.
22. H. Sun, S. Kang, and L. Cui, Prospects of LLZO Type Solid Electrolyte: From Material Design to Battery Application, Chem. Eng. J., 2023, 454, 140375.
23. Y. Ji, Y.-H. Zhang, F.-N. Shi, and L.-Z. Zhang, UV-Derived Double Crosslinked PEO-Based Solid Polymer Electrolyte for Room Temperature, J. Colloid Interface Sci., 2023, 629, 492–500.
24. J. Roh, J. Lyoo, and S.-T. Hong, Enhanced Li-Ion Conductivity and Air Stability of Sb-Substituted Li4GeS4 toward All-Solid-State Li-Ion Batteries, ACS Appl. Energy Mater., 2023, 6, 5446-5455.
25. G. Yang, X. Bai, Y. Zhang, Z. Guo, C. Zhao, L. Fan, and N. Zhang, A Bridge between Ceramics Electrolyte and Interface Layer to Fast Li+ Transfer for Low Interface Impedance Solid-State Batteries, Adv. Funct. Mater., 2022, 33, 2211387.
26. P. Xie, R. Yang, Y. Zhou, B. Zhang, and X. Tian, Rationally Designing Composite Gel Polymer Electrolyte Enables High Sulfur Utilization and Stable Lithium Anode, Chem. Eng. J., 2022, 450, 138195.
27. J. Bi, L. Zhang, B. Wu, M. Xiao, L. Wang, and Z. Li, An LLTO-Containing Heterogeneous Composite Electrolyte with a Stable Interface for Solid-State Lithium Metal Batteries, Dalton. T., 2023, 52, 14064–14074.
28. L. Zhang, X. Zhang, G, Tian, Q. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z. Shen, G. Yang, L. Gu, and F. Du, Lithium Lanthanum Titanate Perovskite as an Anode for Lithium-Ion Batteries, Nat. Commun., 2020, 11, 3490.
29. J. Ring, A. Nenning, and J. Fleig, Defect Chemistry and Mixed Conduction in Lithium Lanthanum Titanate During the Transition from Electrolyte to Anode Material, J. Electrolytes. Soc., 2023, 170, 050530.
30. C. Cao, Y. Zhong, K. C. Wasalathilake, M. O. Tade, X. Xu, H. Rabiee, M. Roknuzzaman, R. Rahman, and, Z. Shao, A Low Resistance and Stable Lithium-Garnet Electrolyte Interface Enabled by a Multifunctional Anode Additive for Solid-State Lithium Batteries, J. Mater. Chem. A, 2022, 10, 2519–2527.
31. Z. Fan, J. Xiang, Q. Yu, X. Wu, M. Li, X. Wang, X. Xia, and J. Tu, High Performance Single-Crystal Ni-Rich interfaces via Crystalline LLTO Nanocoating for All-Solid-State Lithium Batteries, ACS Appl. Mater. Interfaces, 2022, 14, 726–735.
32. E. Heidari, M. A. R. Khollari, and R. Soltan, Li0.33La0.56TiO3, a Novel Coating to Improve the Electrochemical Properties and Safety of NCM523 Cathode Materials for Li-Ion Batteries, New J. Chem., 2023, 47, 11303–11311.
33. J. Yan, X. Liu, B. Li, J. Yu, and B. Ding, Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection, Adv. Mater, 2018, 30, 1705105.
34. J. Zheng, M. Gu, H. Chen, P. Meduri, M. H. Enfelhard, J.-G. Zhang, J. Liu, and J. Xiao, Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium–Sulfur Batteries, J. Mater. Chem. A, 2013, 1, 8464–8470.
35. S. Zhang, X. Zhuang, X. Du, X. Zhang, J. Li, G. Xu, Z. Ren, Z. Cui, L. Huang, S. Wang, F. Sun, L. Qiao, S. Dong, and G. Cui, A Novel Potassium Salt Regulated Solvation Chemistry Enabling Excellent Li-Anode Protection in Carbonate Electrolytes, Adv Mater, 2023, 35, 2301312.
36. T. Hu, Y. Guo, Y. Meng, Z. Zhang, J. Yu, J. Cai, and Z. Yang, Uniform Lithium Deposition Induced by Copper Phthalocyanine Additive for Durable Lithium Anode in Lithium–Sulfur Batteries, Chin. Chem. Lett., 2024, 35, 108603.
37. J. Tang, L. Wang, L. You, X. Chen, T. Huang, L. Zhou, Z. Geng, and A. Yu, Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid-Liquid Hybrid Lithium Batteries, ACS Appl. Mater. Interfaces, 2021, 13, 2685–2693.
38. A. K. Parameswaran, S. Pazhaniswamy, L. Dekanovsky, N. Balakrishnan, C.S. Paneerselvam, M. V. Reddy, S. Adams, and Z. Sofer, An Integrated Study on the Ionic Migration Across the Nano Lithium Lanthanum Titanate (LLTO) and Lithium Iron Phosphate-Carbon (LFP-C) Interface in All-Solid-State Li-Ion Batteries, J. Power Sources, 2023, 565, 232907.
39. S. D. S. Fitch, G. E. Moehl, N. Meddings, S. Fop, S. Soule, T.-L. Lee, M. Kazemian, N. G. Araez, and A. L. Hector, Combined Electrochemical, XPS, and STXM, Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries, ACS Appl. Mater. Interfaces, 2023, 15, 39198–39210.
40. R. Li, L. Yang, L. Song, C. Zhou, J. Zhou, T. Chen, C. Wu, Y. Zeng, K. Ma, and H. Yue, A Thin LiGa Alloy Layer from In-Situ Electroreduction to Suppress Anode Dendrite Formation in Lithium–Sulfur Pouch Cell, Chem. Eng. J., 2023, 445, 140707.
41. P. Hu, W. Chen, Y. Wang, T. Chen, X. Qian, W. Li, J. Chen, and J. Fu, Fatigue-Free and Skin-like Supramolecular Ion-Conductive Elastomeric Interphases for Stable Lithium Metal Batteries, ACS Nano, 2023, 17, 16239–16251.
42. C. Cao, Y. Zhong, B. Chen, R. Cai, and Z. Shao, A Li–Li4Ti5O12 Composite Anode for Reducing Interfacial Resistance of Solid-State Batteries, Small Struct., 2023, 4, 2200374.
43. Z. Han, H.-R. Ren, Z. Huang, Y. Zhang, S. Gu, C. Zhang, W. Liu, J. Yang, G. Zhou, Q.-H. Yang, and W. Lv, A Permselective Coating Protects Lithium Anode toward a Practical Lithium−Sulfur Battery, ACS Nano, 2023, 17, 4453–4462.
44. S. Liu, Y. Zhao, X. Li, J. Yu, J. Yan, and B. Ding, Solid-State Lithium Metal Batteries with Extended Cycling Enabled by Dynamic Adaptive Solid-State Interfaces, Adv. Mater, 2021, 33, 2008084.
45. S. Ni, J. Sheng, C. Zhang, X. Wu, C. Yang, S. Pei, R. Gao, W. Liu, L. Qiu, and G. Zhou, Dendrite-Free Lithium Deposition and Stripping Regulated by Aligned Microchannels for Stable Lithium Metal Batteries, Adv. Funct. Mater., 2022, 32, 2200682.
46. R. Meng, X. He, S. J. H. Ong, C. Cui, S. Song, P. Paoprasert, Q. Pang, Z. J. Xu, and X. Liang, A Radical Pathway and Stabilized Li Anode Enabled by Halide Quaternary Ammonium Electrolyte Additives for Lithium–Sulfur Batteries, Angew. Chem. Int. Ed., 2023, 135, e202309046.
47. Y. Zhao, S. Chen, M. Guan, B. Ding, J. Yu, and J. Yan, Integrated Solid-State Li-Metal Batteries Mediated by 3D Mixed Ion-Electron Conductive Anodes and Deformable Molten Interphase, Chem. Eng. J., 2022, 442, 136227.
48. J. Yan, X. Liu, B. Li, J. Yu, and B. Ding, Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection, Adv. Mater, 2018, 30, 1705105.
49. C. Wang, C. Yang, Y. Du, Z. Guo, and H. Ye, Spherical Lithium Deposition Enables High Li-Utilization Rate, Low Negative/Positive Ratio, and High Energy Density in Lithium Metal Batteries, Adv. Funct. Mater., 2023, 33, 2303427.
50. A. Bhargav, J. He, A. Gupta, and A. Manthiram, Lithium–Sulfur Batteries: Attaining the Critical Metrics, Joule, 2020, 4, 285–291.
51. Y. Fei, and G. Li, Unveiling the Pivotal Parameters for Advancing High Energy Density in Lithium–Sulfur Batteries: A Comprehensive Review, Adv. Funct. Mater., 2024, 34, 2312550.
52. X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun, L. Wang, Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities, Energy Technol., 2019, 7, 1801001.
53. N. Hart and J. P. Lemmon, Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research, Acta Phys.Chim. Sin., 2021, 37, 2008013.
54. S. Zhang, Y. Chen, K. Chen, S. Yang, R. Bagherzadeh, Y.-E. Miao, and T. Liu, In Situ Construction of Polyether-Based Composite Electrolyte with Bi-Phase Ion Conductivity and Stable Electrolyte/Electrode Interphase for Solid State Lithium Metal Batteries, J. Mater. Chem. A, 2022, 10, 19641–19648.
55. S. M. Kiyoto, K. Sasaki, E. Niwa, S. Honda, H. Tazoe, Voltage Effects on Lithium Extraction/Recovery Via Electrochemical Pumping Using a La0.57Li0.29TiO3 Electrolyte, Sustain. Mater. Technol., 2024, 39, e00779.
56. G. Cheng, H. Sun, H. Wang, Z. Ju, Y. Zhu, W. Tian, J. Chen, H. Wang, J. Wu. G. Yu, Efficient Ion Percolating Network for High-Performance All-Solid-State Cathodes, Adv Mater, 2024, 36, 2312927.
57. C. A. Lin, M. Ihrig, K.-C. Kung, H.-C. Chen, M. Finsterbusch, O. Guillon, and S.-K. Lin, In Situ Interphase Engineering for All-Solid-State Li Batteries: A Case Study on the LiNi0.5Mn1.5O4/Li0.33La0.55TiO3 Composite Cathode Guided by Ab Initio Calculations, J. Energy. Chem., 2024, 12, 9438–9453.
58. X. Hu, G. Yan, X. Cheng, J. Malzbender, W. Qiang, and B. Huang, Electrochemical and Mechanical Stability of LixLa0.557TiO3-δ Perovskite Electrolyte at Various Voltages, J. Am. Ceram. Soc., 2019, 102, 1953–1960.
59. C. Hua, X. Fang, Z. Wang, and L. Chen, Lithium Storage in Perovskite Lithium Titanate, Electrochem. Commun., 2013, 32, 5–8.
60. V. Mereacre, P. Stuble, V. Trouillet, S. Ahmed, K. Volz, and J. R. Binder, Coating Versus Doping: Understanding the Enhanced Performance of High-Voltage Batteries by the Coating of Spinel LiNi0.5Mn1.5O4 with Li0.35La0.55TiO3, Adv. Mater. Interfaces., 2022, 10, 2201324.
61. L. Xu, T. Feng, J. Huang, Y. Hu, L. Zhang, and L. Luo, Structural Heterogeneity Induced Li Dendrite Grow thin Li0.33La0.56TiO3 Solid-State Electrolytes, ACS Appl. Energy Mater., 2022, 5, 3741–3747.
62. C. Cao, Y. Zhong, L. Zhao, H. Seneque, and Z. Shao, Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode, ACS Appl. Mater. Interfaces, 2023, 15, 59370–59379.
63. S. Kim, H. Lee, J. Park, M. Ku, M. Kim, and Y. B. Kim, Lithium-Preserved Sintering Method for Perovskite-Based Solid Electrolyte Thin Films Via Flash Light Sintering for All-Solid-State Lithium-Ion Batteries, J. Mater. Chem. A, 2023, 11, 21586–21594.
64. H. Chen, Z. Cao, M. Huang, X. Ren, Y. Zhao, L. Yu, Y. Liu, L. Zhoug, and Y. Qiu, In-Situ Interfacial Passivation and Self-Adaptability Synergistically Stabilizing All-Solid-State Lithium Metal Batteries, J. Energy. Chem., 2024, 88, 282–292.
65. Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, and S. Jiao, Enabling High-Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte, Angew. Chem. Int. Ed., 2020, 132, 3533–3538.
66. S. Li, S. Pang, X. Qian, L. Jin, and X. Shen, Enhancing the Electrochemical Properties of a Lithium–Sulfur Battery Using a Modified Separator with a Phase-Inversion Layer, Dalton. T., 2024, 53, 2937–2948.
67. Y.-S. Chen, J.-K. Chang, and Y.-S. Su, Engineering a Lithium Silicate-Based Artificial Solid Electrolyte Interphase for Enhanced Rechargeable Lithium Metal Batteries, Surf. Coat. Technol., 2024, 408, 130617.
68. X. Wu, S. Zhang, X. Xu, F. Wen, H. Wang, H. Chen, X. Fan, and N. Huang, Lithiophilic Covalent Organic Framework as Anode Coating for High-Performance Lithium Metal Batteries, Angew. Chem. Int. Ed., 2024, 63, e202319355.
69. X. Han, T. Wu, L. Gu, M. Chen, J. Song, D. Tian, and J. Chen, Li-MOF-Based Ions Regulator Enabling Fast-Charging and Dendrite-Free Lithium Metal Anode, Chin. Chem. Lett., 2023, 34, 107594.
70. C. We, J. Deng, J. Xing, Z. Wang, Z. Song, D. Wang, J. Jiang, X. Wang, A. Zhou, W. Zou, and J. Li, A Hybrid Polymer Protective Layer with Uniform Li+ Flux and Self-Adaption Enabling Dendrite-Free Li Metal Anodes, Nanoscale. Adv., 2023, 5, 5094–5101.
71. B. Zhao, C. Xing, Y. Shi, Q. Duan, C. Shen, W. Li, Y. Jiang, and J. Zhang, Construction of High Elastic Artificial SEI for Air-Stable and Long-Life Lithium Metal Anode, J. Colloid Interface Sci., 2023, 642, 193–203.
72. L. Liu, H. Jiang, R. Hu, Z. Shen, H. Li, and J. Liu, Tough Lithium-Rich Organic Film Via Molecular Layer Deposition for Highly Stable Lithium Metal Anode, J. Power Sources, 2023, 555, 232395.
73. H. Liu, X.-B. Cheng, R. Xu, X.-Q. Zhang, C. Yan, J.-Q. Huang, and Q. Zhang, Plating/Stripping Behavior of Actual Lithium Metal Anode, Adv. Energy. Mater., 2019, 9, 1902254.
74. S. D. Talian, J. Bobnar, A. R. Sinigoj, I. Humar, and M. Gaberšček, Transmission Line Model for Description of the Impedance Response of Li Electrodes with Dendritic Growth, J. Phys. Chem. C., 2019, 123, 27997–28007.
75. T. Chen, B. Qin, Y. Liu, Z. Jin, H. Wu, C. Wang, and X. Zhang, A Fluorinated, Ion-Conducting and Adaptive Supramolecular Polymer Protective Layer for Stabilizing Lithium Metal Anodes, Chin. Chem. Soc., 2024, 6, 1157–1164.
76. W. Chen, Y. Hu, Y. Liu, S. Wang, A. Hu, T. Lei, Y. Li, P. Li, D. Chen, L. Xia, L. Xue, Y. Yan, G. Lu, M. Zhou, Y. Fan, H. Yang, X. Tao, X. Wang, Y. Li, and J. Xiong, Ultralong Cycling and Safe Lithium–Sulfur Pouch Cells for Sustainable Energy Storage, Adv. Mater., 2024, 36, 2312880.
77. Q. Wu, Y. Mei, H. Huang, F. Zhou, H. Li, and H. Chen, Dynamic Physical Network Constructed by Tripartite H-Bonds in Artificial SEI to Shape Ultra-Long Life Dendrite-Free Lithium-Metal Anodes, Mater. Today., 2024, 75, 112–124.
78. C.-J. Hu, Y.-P. Zheng, Z.-W. Li, C. Xia, D. H. C. Chua, X. Hu, T. Liu, X.-B. Liu, Z.-P. Wu, B.-Y. Xia, Artificial LiF-Rich Interface Enabled by in Situ Electrochemical Fluorination for Stable Lithium-Metal Batteries, Angew. Chem. Int. Ed., 2024, 136, e202319600.
79. J. Pan, K. Shi, H. Wu, J. Li, R. Zhang, Q. Liu, and Z. Liang, Lithium Dredging and Capturing Dual-Gradient Framework Enabling Step-Packed Deposition for Dendrite-Free Lithium Metal Anodes, Adv. Mater., 2023, 14, 2302862.
80. K. Li, Z. Wang, B. Yang, T. Li, B. Li, J. Chen, Z. Yan, M. He, A. Hu, and J. Long, Elucidating the Role of Polar Functional Groups in Fluorinated Polymer Artificial Interphase for Stable Lithium Anodes, Chem. Eng. J., 2024, 493, 152–527.
81. W. Zhang, J. Wang, H. Zhang, Q. Dong, S. Zhang, B. Sun, Z. Chen, H. Guo, X. Han, Y. Deng, and W. Hu, ZIF-Derived Co3O4 Nanoflake Arrays Decorated Nickel Foams as Stable Hosts for Dendrite-Free Li Metal Anodes, Small Struct., 2024, 5, 2300358.
82. S. Yang, M. Hu, X. Liang, Z. Xie, Z. Wang, and K. Zhou, In Situ Construction of Robust Artificial Solid-Electrolyte Interphase Layer on Lithium-Metal Anode by a Facile One-Step Solution Route, J. Colloid Interface Sci., 2024, 659, 886–894.
83. F. Liu, P. Zuo, P. Shi, Y. Shao, L. Chen, and Y. Tan, A Layered Multifunctional Framework Based on Polyacrylonitrile and MOF Derivatives for Stable Lithium Metal Anode, J. Energy. Chem., 2024, 93, 282–288.
84. J. Pokharel, A. Cresce, B. Pant, M.-Y. Yang, A. Gurung, W. He, A. Baniya, B. S. Lamsal, Z. Yang, S. Gent, X. Xian, Y. Cao, W. A. Goddard, K. Xu, and Y. Zhou, Manipulating the Diffusion Energy Barrier at the Lithium Metal Electrolyte Interface for Dendrite-Free Long-Life Batteries, Nat. Commun., 2024, 15, 3085.
85. D. Zhang, P. Lv, W. Qin, and Y. He, Ultrathin LiF-Rich Solid Electrolyte Interphase for Stable Long-Life Cycling Stabilization of Lithium Metal Anodes, Electrochim. Acta, 2024, 490, 144244.
86. P. Li, G. Zhang, L. Xiao, K. Chen, X. Li, B. Han, J. Qiu, Q. Xu, and J. Xu, Activating the Electrode–Electrolyte Interface Via a ZnO@black Phosphorus Modulation Layer for Dendrite-Free Li Metal Anodes, Mater. Chem. Front., 2024, 8, 287–296.
87. C. Xu, S. Zhang, C. Chen, Y. Lin, B. Qu, H. Zhou, and M. Wu, Rational Construction Ag/LiF/sulfide Rich Protective Layer for Remarkably Enhancing the Stability of Li Metal Anodes, Chem. Eng. J., 2024, 482, 148914.
88. Q. Duan, Y. Liu, J. Lang, C. Ma, Y. Li, J. Wang, D. Ning, G. Zhong, C Yang, and W. Wu, In Situ Designing an Implanted Hetero-Interface of High Adsorption Energy in Composite Lithium Anode Towards High−Rate Lithium Metal Batteries, Energy Storage Mater., 2024, 70, 103504.
89. H. Wu, Y. Lin, Z. Wang, K. Shi, J. Li, J. Pan, J. Ren, X. Li, Y. Min, M. Wu, and Q. Liu, In-Situ Polymerized Electrolyte from a Bifunctional Additive for Li+ Bulk Phase Migration and High-Flux Interface Transport in Lithium Metal Batteries, Chem. Eng. J., 2024, 486, 150343.
90. X. Hu, Y. Ma, J. Qian, W. Qu, Y. Li, R. Luo, H. Wang, A. Zhou, Y. Chen, K. Shi, L. Li, F. Wu, and R. Chen, Self-Induced Dual-Layered Solid Electrolyte Interphase with High Toughness and High Ionic Conductivity for Ultra-Stable Lithium Metal Batteries, Adv. Mater., 2023, 36, 2303710.
91. C. Liao, R. Zou, J. Zhu, Z. Cui, M. Gao, L. Zhang, W. Wang, and H. Chen, Coregulation of Li/Li+ Spatial Distribution by Electric Field Gradient with Homogenized Li-Ion Flux for Dendrite-Free Li Metal Anodes, Small, 2024, 20, 2305085.
92. H. Feng, Y. He, M. Ma, S. Gao, S. Zhao, X. Shan, H. Yang, and P.-F. Cao, Hybrid Dynamic Covalent Network-Based Protecting Layer for Stable Li-Metal Batteries, ACS. Appl. Mater. Interfaces, 2024, 16, 12374–12384.
93. Y. Wang, X. Li, L. Wu, J. Tan, G. Liu, C. Ye, L. Ma, Z. Liu, M. Ye, and J. Shen, Highly Lithiophilic and Uniform Co-MOF-Derived Ultrathin Co3O4 Nanoarrays Enable Dendrite-Free Lithium Metal Anode, Energy Storage Mater., 2024, 66, 103247.
94. Y. Jin, I.-H. Lee, T. Gu, S.-H. Jung, H. Chang, B.-S. Kim, J. Moon, D. Whang, Vertically Aligned Conductive Metal-Organic Frameworks with Switchable Electrical Conductivity for Li Metal Anode, Adv. Funct. Mater., 2024, 34, 2310097.
95. S.-J. Tan, J. Yue, Z. Chen, X.-X. Feng. J. Zhang, Y.-X. Yin, L. Zhang, J.-C. Zheng, Y. Luo, and Y.-G. Guo, Asymmetric Fire-Retardant Quasi-Solid Electrolytes for Safe and Stable High-Voltage Lithium Metal Battery, Energy. Mater. Adv., 2024, 5, 0076.
96. F. Ma, Z. Chen, K. Srinivas, Z. Zhang, Y. Wu, D. Liu, H. Yu, Y, Wang, X. Li, M.-Q. Zhu, Q. Wu, and Y. Chen, NbN Quantum Dots Anchored Hollow Carbon Nanorods as Efficient Polysulfide Immobilizer and Lithium Stabilizer for Li–S Full Batteries, J. Energy. Chem., 2024, 88, 260–271.
97. Z. Wang, S. Qin, F. Chen, S. Chen, D. Liu, D. Jiang, P. Zhang, P. M. Santiago, D. Hegh, P. Lynch, A. S. Alotabi, G. G. Andersson, P. C. Howlett, M. Forsyth, W. Lei, and J. M. Razal, Interfacial Modification of Lithium Metal Anode by Boron Nitride Nanosheets, ACS Nano, 2024, 18, 3531–3541.
98. Y. Li, T. Wang, J. Chen, X. Peng, M. Chen, B. Liu, Y. Mu, L. Zeng, and T. Zhao, An Artificial Interfacial Layer with Biomimetic Ionic Channels Towards Highly Stable Li Metal Anodes, Sci. Bull., 2023, 68, 1379–1388.
99. P. C. Rath, M.-S. Liu, S.-T. Lo, R. S. Dhaka, D. Bresser, C.-C. Yang, S.-W. Lee, and J.-K. Chang, Suppression of Dehydrofluorination Reactions of a Li0.33La0.557TiO3 Nanofiber-Dispersed Poly(vinylidene fluoride-co hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer, ACS Appl. Mater. Interfaces, 2023, 15, 15429–15438.
100. C.-X. Bi, X.-Y. Li, J. Ma, X. Chen, X.-Q. Zhang, A. Chen, H. Chen, Z. Zhang, L.-Z. Fan, B.-Q. Li, C. Tang, and Q. Zhang, A Three-Way Electrolyte with Ternary Solvents for High-Energy-Density and Long-Cycling Lithium–Sulfur Pouch Cells, SusMat, 2024, 4, e191.
101. P. Zhai, Q. He, H. Jiang, B. Gao, B. Zhang, Q. Chen, Z. Yang, T. Wang, and Y. Gong, Thickness-Dependence of 2D g-C3N4 Artificial Interface Layers on Lithium Metal Deposition, Adv. Energy. Mater., 2024, 14, 2302730.
102. Y. Fan, T. Tao, Y. Gao, C. Deng, B. Yu, Y. Chen, S. Lu, and S. Huang, A Self-Healing Amalgam Interface in Metal Batteries, Adv. Mater., 2020, 32, 2004798.
103. S. H. Siyal, M. S. Javed, A. H. Jatoi, J.-L. Lan, Y. Yu, M. Saleem, and X. Yang, In Situ Curing Technology for Dual Ceramic Composed by Organic–Inorganic Functional Polymer Gel Electrolyte for Dendritic-Free and Robust Lithium–Metal Batteries, Adv. Mater. Interfaces., 2020, 7, 2000830.
104. M. A. Zabara, G. Katırcı, F. E. Civan, A. Yürüm, S. A. Gürsel, and B. Ülgüt, Insights into Charge Transfer Dynamics of Li Batteries Through Temperature-Dependent Electrochemical Impedance Spectroscopy (EIS) Utilizing Symmetric Cell Configuration, Electrochim. Acta, 2024, 485, 144080.
105. Y. Xiao, R. Xu, L. Xu, Y.-X, Zhan, J.-F. Ding, S. Zhang, Z.-H, Li, C. Yan, and J.-Q. Huang, The Regulation of Lithium Plating Behavior by State of Stripping in Working Lithium Metal Anode, Adv. Energy. Mater., 2023, 13, 2300959.
106. L. Yue, X. Wang, L. Chen, D. Shen, Z. Shoa, H. Wu, S. Xiao, W. Liang, Y. Yu, and Y. Li, In Situ Interface Engineering of Highly Nitrogen Rich Triazine-Based Covalent Organic Frameworks for an Ultra-Stable, Dendrite-Free Lithium-Metal Anode, Energy Environ. Sci., 2024, 17, 1117–1131.
107. B. Li, H. Wang, W. Zhou, F. Liu, J. He, G. Du, and Q. Su, In Situ Construction of PVDF/LLTO Electrolyte with Stable Electrolyte/Electrode Interphase for Integrated Solid-State Lithium Batteries, J. Alloys Compd., 2023, 969, 172352.
108. C. Chen, J. Zhang, B. Hu, Q. Liang, and X. Xiong, Dynamic Gel as Artificial Interphase Layer for Ultrahigh-Rate and Large-Capacity Lithium Metal Anode, Nat. Commun., 2023, 14, 4018.
109. N. Jones, The New Car Batteries that Could Power the Electric Vehicle Revolution, Nature, 2024, 626, 248–251.
110. T. Fuchs, C. G. Haslam, F. H. Richyer, J. Sakamoto, and J. Janek, Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytes, Adv. Energy. Mater., 2023. 13, 2302383.
111. S.-Y. Ham, H. Y, O. N. Cuacuas, D. H. S. Tan, Y.-T. Chen, G. Deysher, A. Cronk, P. Ridley, J. M. Doux, E. A. Wu, J. Jang, Y. S. Meng, Assessing the Critical Current Density of All-Solid-State Li Metal Symmetric and Full Cells, Energy Storage Mater., 2023, 55, 455–462.
112. Y. Fei, and G. Li, Unveiling the Pivotal Parameters for Advancing High Energy Density in Lithium–Sulfur Batteries: A Comprehensive Review, Adv. Funct. Mater., 2024, 34, 2312550.
113. B. Choi, K.-G. Kim, M. Lim, B. Kim, J. Seo, J. Lee, S. Park, K.-H. Kim, Y.-M. Lee, and H. Lee, Surface Adaptive Dual-Layer Protection of Li-metal Anode for Extending Cycle-Life of Li–Sulfur Batteries with Lean Electrolyte, Adv. Funct. Mater., 2024, 34, 2316838.
114. L. Gan, K. Wang, Y. Liu, W. Ahamd, X. Wang, J. Chen, M. Ling, M. Sun, and C. Liang, Dendrite-free Li-metal Anode Via a Dual-Function Protective Interphase Layer for Stable Li-Metal Pouch Cell, Sustain. Mater. Technol., 2023, 32, e00585.
115. Z. Li, Y. Li, C.-X. Bi, Q.-K. Zhang, L.-P. Hou, X.-Y. Li, J. Ma, X.-Q. Zhang, B.-Q. Li, R. Wen, and Q. Zhang, Construction of Organic-Rich Solid Electrolyte Interphase for Long-Cycling Lithium–Sulfur Batteries, Adv. Funct. Mater., 2024, 34, 2304541.
116. W. Liu, A. Zhai, Q. Chen, S. Liu, M. Yu, Z. Wang, Z. Gao. X. Zhao, G. Sun, and M. Feng, Constructing Lithiophilic Sites-Rich Artificial Solid Electrolyte Interphase to Enable Dendrite-Free and Corrosion-Free Lithium–Sulfur Batteries, Green. Energy. Environ., DOI: 10.1016/j.gee.2024.05.008.
117. Y. Ding, X. Li, Y. Chen, Y. Pi, J. Yu, L. Yuan, and F. Wang, Hit Two Birds with One Stone: A Bi-Functional Selenium-Substituted Organosulfur Polymer Additive for High-Performance Lithium–Sulfur Batteries, Chem. Eng. J., 2024, 482, 148803.
118. W. Lu, Z. Wang, G. Sun, S. Zhang, L. Cong, L. Lin, S. Chen. J. Liu, H. Xie, and Y. Liu, Anchoring Polysulfide with Artificial Solid Electrolyte Interphase for Dendrite-Free and Low N/P Ratio Li–S batteries, J. Energy. Chem., 2023, 80, 32–39.
119. Y. Xiang, L. Lu, W. Li, F. Yan, H. Wang, Z. Zhao, J. Li, A. G. P. Kottapalli, and Y. Pei, Nitrogen-Doped Porous Carbon Nanofibers Embedded with Cu/Cu3P Heterostructures as Multifunctional Current Collectors for Stabilizing Lithium Anodes in Lithium–Sulfur Batteries, Chem. Eng. J., 2023, 472, 145089.
120. S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng, X. Wu, and G. Zhou, A 3D Framework with Li3N–Li2S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithium-Metal Anode, Adv. Mater., 2023, 35, 2209028.
121. D. McNamara, M. Shaibani, M. Majumder, and M. R. Hill, A Nanoporous Permselective Polymer Coating for Practical Low N/P Ratio Lithium Metal Batteries, Adv. Sustain. Syst., 2023, 7, 2300231.
122. M. Zhang, R. Luo, Q. Guo, Z. Tang, X. Li, B. Gao, X. Zhang, K. Huo, and Y. Zheng, Structural and Interfacial Manipulation of Multifunctional Skeletons Enabled Shuttling-Free and Dendrite-Free Li–S Full Batteries, Small, 2023, 19, 2303784.
123. Y. Ye, Y. Liu, J. Wu, and Y. Yang, Lithiophilic Li-Zn Alloy Modified 3D Cu Foam for Dendrite-Free Lithium Metal Anode, J. Power Sources, 2020, 472, 228520.
124. Q. Jin, K. Zhao, L. Li, X. Ma, L. Wu, and X. Zhang, Tailoring the Spatial Distribution and Content of Inorganic Nitrides in Solid-Electrolyte Interphases for the Stable Li Anode in Li–S Batteries, Energy Environ. Mater., 2022, 5, 1180–1188.
125. Y. Liu, C. He, J. Bi, S. Li, H. Du, Z. Du, W. Guan, and W. Ai, High-Areal Capacity, High-Rate Lithium Metal Anodes Enabled by Nitrogen-Doped Graphene Mesh, Small, 2024, 20, 2305964.
126. J. Pu, P. Xue, T. Li, J. Wu, K. Zhang, K. Zhu, S. Guo, G. Hong, H. Zhou, and Y. Yao, In Situ Regulation of Dendrite-Free Lithium Anode by Improved Solid Electrolyte Interface with Defect-Rich Boron Nitride Quantum Dots, J. Mater. Chem. A, 2022, 10, 20265–20272.
127. Y. Ren, B. Wang, H. Liu, H. Wu, H. Bian, Y. Ma, H. Lu, S. Tang, and X. Meng, CoP Nanocages Intercalated MXene Nanosheets as a Bifunctional Mediator for Suppressing Polysulfide Shuttling and Dendritic Growth in Lithium–Sulfur Batteries, Chem. Eng. J., 2022, 450, 138046.
128. P. Wang, F. Sun, S. Xiong, Z. Zhang, B. Duan, C. Zhang, J. Feng, and B. Xi, WSe2 Flakelets on N-Doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating, Angew. Chem. Int. Ed., 2022, 61, e202116048.
129. Z. Shi, Z. Sun, X. Yang, C. Lu, S. Li, X. Yu, Y. Ding, T. Huang, and J. Sun, Synergizing Conformal Lithiophilic Granule and Dealloyed Porous Skeleton toward Pragmatic Li Metal Anodes, Small Sci., 2022, 2, 2100110.
130. X. Xiong, R. Sun, W. Yan, Q. Qiao, Y. Zhu, L. Liu, L. Fu, N. Yu, Y. Wu, and B. Wang, A Lithiophilic AlN-Modified Copper Layer for High-Performance Lithium Metal Anodes, J. Mater. Chem. A, 2022, 10, 13814–13820.
131. Y. Fang, Y. Zhang, Y.-Y. Hsieh, M. Khosravifar, P. K. Adusei, G. Zhang, J.-H. Bahk, and V. Shanov, Three-Dimensional Graphene with Charge Transfer Doping for Stable Lithium Metal Anode, J. Electroanal. Chem., 2022, 918, 116512.
132. X. Xion, W. Yan, Y. Zhu, L. Liu, L. Fu, Y. Chen, N. Yu, Y. Wu, B. Wang, and R. Xiao, Li4Ti5O12 Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode, Adv. Energy Mater., 2022, 12, 2103112.
133. H. Zhang, S. Ju, G. Xia, and X. Yu, Identifying the Positive Role of Lithium Hydride in Stabilizing Li Metal Anodes, Sci. Adv., 2022, 8, eabl8245.
134. T Liu, Z. Shi, H. Li, W. Xue, S. Liu, J. Yue, M. Mao, Y.-S. Hu, H. Li, X. Huang, L. Chen, and L. Suo, Low-Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries’ Lifetime, Adv Mater., 2021, 33, 2102034.
135. P. Xue, K. Zhu, W. Gong, J. Pu, X. Li, C. Guo, L. Wu, R. Wang, H. Li, J. Sun, G. Hong, Q. Zhang, and Y. Yao, “One Stone Two Birds” Design for Dual-Functional TiO2-TiN Heterostructures Enabled Dendrite-Free and Kinetics-Enhanced Lithium–Sulfur Batterie, Adv. Energy Mater., 2022, 12, 2200308.
校內:2029-08-12公開