簡易檢索 / 詳目顯示

研究生: 江仁楙
Chiang, Jen-Mao
論文名稱: 氣態氫化鈉分子D1 能態高位能的光譜探討
Spectroscopic Study of the NaH D1 Higher Vibrational State Levels
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 氫化鈉光譜
外文關鍵詞: Spectroscopic Study, NaH
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本光譜學研究中,我們利用兩台脈衝式染料雷射進行雙光子共振螢光衰減光譜技術(Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy)來偵測氣態氫化鈉分子高能位的D1+電子態,我們採用疊加式雙光子激發(Stepwise OODR Excitation)的方式進行實驗,並藉由檢測A1+  X1+的螢光衰減訊號來找尋D1+電子態的振轉能級。

      我們觀測的能量範圍分別位於43215 ~ 44795 cm-1、41736 ~ 42095 cm-1總共得到v*+18 ~ v*+37、v*+2 ~ v*-2共24個振動量子數。觀測的轉動量子數分佈於J=1 ~ 11中,共計有156個振轉能階被觀測到。其振動能階能量差ΔGv+1/2分佈於171 ~ 62 cm-1中,轉動常數Bv則分佈於0.594 ~ 0.451 cm-1中。

      未來期望能再加入更詳盡的實驗數據,且進一步確認絕對振動量子數v值並推得分子常數,使氫化鈉分子D1+電子態的位能曲線更臻完整。

     In this study, nineteen vibrational levels of the NaH D1+ electronic state have been observed by the Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy (OODR-FDS) technique. We applied the stepwise OODR excitation in our experiments. The OODR spectra of the NaH D1+ electronic state have been taken by monitoring the fluorescence depletion of the A1+ state to the X1+ state.

     We have observed 156 rovibrational levels (including 24 vibrational levels) of the D1+ electronic state;they are in the range of 43215 ~ 44795 cm-1.、41736 ~ 42095 cm-1 The observed vibrational level spacings of ΔGv+1/2 are in the range 171 ~ 62 cm-1and derived rotational constants Bv are 0.594 ~ 0.451 cm-1.

     However, we have to confirm the absolute vibrational quantum number by a further study and the Dunham coefficients can be derived to construct the complete potential energy curve of the NaH D1+ electronic state.

    中文摘要…………………………………………………………………………... Ⅰ 英文摘要…………………………………………………………………………... Ⅱ 目錄………………………………………………………………………………... Ⅲ 表目錄……………………………………………………………………………... Ⅵ 圖目錄……………………………………………………………………………... Ⅶ 第一章 緒論………………………………………………………………….. 1 1-1 前言……...……………………………………………………………. 1 1-2 有關氫化鈉電子態的研究…………………………………………. 1 1-2-1 NaH的X1+和A1+電子態之雷射光譜研究………… ……….. 1 1-2-2 NaH的D1+電子態之雷射光譜實驗研究……………………... 3 第二章 理論………………………………………………………………..… 7 2-1 雙原子分子的波函數與能……………………………………………量………………………………...……….. 7 2-2 雙原子分子的電子態光譜………………...……………………...….. 11 2-3 雙原子分子電子態躍遷選擇律……...………………………………. 11 2-4 法蘭克-康登原理………………..……............................................... 12 2-5 Fano lineshape parameter……………………………………………… 13 第三章 實驗………………………………………………………………….. 16 3-1 實驗裝置與儀器介紹………...…………………...…………….…..... 16 3-1-1 雷射系統………………………………………...…………..….. 16 3-1-2 雷射染料……………………………………………...……..….. 16 3-1-3 雷射頻率校正……………………………………………..……. 17 3-1-4 熱管爐系統……………………..………………………………. 17 3-1-5 偵測系統………………………..……………………………… 18 3-1-6 訊號資料處理………………….………………………………. 19 3-2 實驗介紹…..………………………..……………………….….……. 19 3-2-1 雙光子共振光譜法簡介…………..……………………………. 19 3-2-2 實驗方法…………………………..……………………………. 20 3-2-3 實驗步驟…………………………..……………………………. 21 第四章 結果與討論………………………………………………………….. 32 4-1 確定NaH分子的存在…………………...…………………….……. 32 4-2 NaH分子的X1+和A1+電子態之分子常數…….…………………. 33 4-3 NaH分子高能位D1+電子態的OODR偵測…………………….….. 33 4-3-1 實驗結果………………………..………………………………. 33 4-3-2 訊號的確認…...……………………………...……………..…… 34 4-3-3 訊號的分析……..……………………………………..………... 35 4-3-4 待完成的實驗計畫.……...………………..……..…….…...…... 36 第五章 結論.….….….….….….….….….….….….….….….…..….….….. 56 參考文獻…..….….….….….….….….….….….….….….….….….….…... 57 自述……………………………………………………………………………. 60

    1. R. E. Olson and B. Liu, J. Chem. Phys. 73, 2817 (1980)
    2. H. S. Lee, Y. S. Lee, and G. H. Jeung, Chem. Phys. Lett. 325, 46(2000)
    3. J. J. Chen, W. T. Luh, and G. H. Jeung, J. Chem. Phys. 110, 4402 (1999).
    4. Y. L. Huang, W. T. Luh, G. H. Jeung, and F. Xavier Gadea, J. Chem. Phys. 113, 683 (2000).
    5. P. J. Dagdigian, J. Chem. Phys. 64, 2609 (1976)
    6. P. J. Dagdigian, J. Chem. Phys. 71, 2328 (1979).
    7. P. Baltayan, A. Jourand, and O. Nedelec, Phys. Lett. 58A, 443 (1976).
    8. J. T. Bahns and W. C. Stwalley, Appl. Phys. Lett. 44, 826 (1984).
    9. K. R. Leopold, L. R. Zink, K. M. Evenson, and D. A. Jennings, J. Mol. Spectrosc. 122, 150 (1987).
    10. Ulrich Magg and Harold Jones, Chem. Phys. Lett. 146, 415 (1988).
    11. A. G. Maki and W. B. Olson, J. Chem. Phys. 90, 6887 (1989).
    12. E. S. Sachs, J. Hinze and N. H. Sabelli, J. Chem. Phys. 62, 3377 (1975).
    13. W. C. Stwalley, W. T. Zemke, and S. C. Yang, J. Phys. Chem. Ref. Data 20, 153 (1991).
    14. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, Z. Phys. D 38, 35 (1996).
    15. A. Klamminger, M. Motzkus, S. Lochbrunner, G. Pichler, K. L. Kompa, and P. Hering, Appl. Phys. B 61, 311 (1995).
    16. M. Rafi, N. Ali, K. Ahmad, I. A. Khan, M. A. Baig, and Z. Iqbal, J. Phys. B: At. Mol. Opt. Phys. 26, L129 (1993).
    17. F. B. Orth, W. C. Stwalley, S. C. Yang, and Y. K. Hsieh, J. Mol. Spectrosc. 79, 314 (1980).
    18. W. C. Stwalley, W. T. Zemke, and S. C. Yang, J. Phys. Chem. Ref. Data 20, 153 (1991).
    19. F. P. Pesl, S. Lutz, and K. Bergmann, Eur. Phys. J. D 10, 247 (2000)
    20. R. E. Olson and B. Liu, J. Chem. Phys. 73, 2817 (1980).
    21. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, Z. Phys. D 38, 35 (1996).
    22. W. T. Zemke, R. E. Olson, K. K. Verma, and W. C. Stwalley, J. Chem. Phys. 80, 356 (1984).
    23. B. K. Taylor, P. R. Newman, J. Chem. Phys. 118, 8770 (2003).
    24. A. S. Dickinson, R. Poteau, and F. X. Gadea, J.Phys. B 32, 5451 (1999).
    25. H. S. Lee, Y. S. Lee, and G. H. Jeung, Chem. Phys. Lett. 325, 46 (2000).
    26. Y. L. Huang, W. T. Luh, G. H. Jeung, and F. X. Gadea, J. Chem. Phys. 113,683 (2000).
    27. G. Herzberg, “Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules”, Robert E. Krieger Publishing Co., Malabar, Florida (1989)
    28. S. Gerstenkorn and P. Luc,“Atlas du Spectre D’Absorption de la Molecule d’Iode”, CNRS, Paris, (1978)
    29. S. Gerstenkorn and P. Luc, Rev. Phys. Appl. 14, 791 (1979)
    30. H. M. Crosswhite, J. Res. of National Bureau of standard-A. Phys. and Chem. 79, 17 (1975)
    31. X. Zhu, A. H. Nur, and P. Misra, J Quant. Spectrosc. Radiat Transfer 52, 167 (1994)
    32. V. Kaufman and B. Edlen, J. Phys. Chem. Ref. Data 3, 825 (1974)
    33. G. Pichler, R. R. B. Correia, S. L. Cunha, K. L. Kompa, and P. Hering, Optics Communications 92, 346 (1992)
    34. S. Bililign and P. D. Kleiber, J. Chem. Phys. 96, 213 (1992)
    35. P. Baltayan, A. Jourand, and O. Nedelec, Phys. Lett. 58A, 443 (1976)
    36. W. Demtroder, “ Laser Spectrocopy ”, Springer-Verlag, Berlin, 569 (1981).
    37. U. Magg and H. Jones, Chem. Phys. Lett. 146, 415 (1988)
    38. R. Al-Tuwirqi, A. Bakry, M. Rafi, and Fayyazuddin, J. Phys. B 30, 2033 (1997)
    39. W. C. Lin, J. J. Chen, and W. T. Luh, J. Phys. Chem. A 101, 6709 (1997)
    40. J. L. Dunham, Phys. Rev. 41, 713 (1932)
    41. R. E. Olson and M.Kimura, Phys. Review A 32, 3092 (1985)
    42. Y. L. Huang, W. T. Luh, G. H. Jeung, and F. X. Gadea, J. Chem. Phys. 113,683 (2000).
    43. A. Pardo, J. J. Camacho, J. M. L. Poyato, and E. Martin, Chem. Phys. 121, 41 (1988)
    44. H. B. Lefebvre, and R. W. Field, Perturbations in the Spectra of Diatomic Molecules , Academic Press, Orlando (1986)

    無法下載圖示 校內:2104-08-29公開
    校外:2104-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE