簡易檢索 / 詳目顯示

研究生: 郭仲文
Kuo, Chung-Wen
論文名稱: 導電高分子分散於聚(磺酸苯乙烯)水溶液及其應用為金屬複合電極於甲醇氧化
Dispersible conducting polymer in aqueous poly(styrene sulfonic acid) and its application to metal composite electrode for methanol oxidation
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 117
中文關鍵詞: 聚(亞乙基二氧硫代酚)-聚(磺酸苯乙烯)
外文關鍵詞: PEDOT-PSS
相關次數: 點閱:47下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將研究分為三大部分,主要研究導電高分子分散於聚(磺酸苯乙烯)(PSS)水溶液及其應用為金屬複合電極於甲醇氧化探討。在此選擇PEDOT-PSS-Pt電極對甲醇氧化之催化能力探討、PEDOT-PSS-Pt/HxMoO3作為觸媒並對甲醇氧化之催化能力探討以及在聚(磺酸苯乙烯)水溶液中製備水分散性之聚苯胺奈米粒子等三大課題。分別敘述如下:
    (1) PEDOT-PSS-Pt電極對甲醇氧化之催化能力探討
    Pt粒子均勻分散在PEDOT-PSS載體作為觸媒電極,利用循環伏安法(cyclic voltammetry)及計時安培法(chronoamperometry)觀察並研究其對甲醇氧化之催化能力及穩定度。為了比較之目的,研究過程中使用白金片和PEDOT-PSS電極作為對照並在相同的條件下試驗,結果顯示,白金粒子嵌入三維空間的PEDOT-PSS載體具有強化對甲醇氧化之催化能力,其顯示電位在0.6 V (vs. Ag/AgCl)之正掃描有較高的氧化電流(2.51 mA cm-2),然而,白金片電極在相同電位下電流值僅為0.45 mA cm-2。ITO/PEDOT-PSS-Pt電極具有強化對甲醇氧化催化能力,這是由於白金粒子均勻分佈於的PEDOT-PSS載體因而具有較高的活性表面積以及分散之白金粒子與PEDOT-PSS載體間之協同效應(synergistic effects)的影響。使用掃描式電子顯微鏡(SEM)及X-ray繞射儀對ITO/PEDOT-PSS-Pt和單純的ITO/Pt表面形態及結晶行為分析。Pt粒子分散在PEDOT-PSS電極能強化對甲醇氧化催化能力。
    (2) PEDOT-PSS-Pt/HxMoO3作為觸媒並對甲醇氧化之催化能力探討
    以共沈積方法成功地將Pt和HxMoO3奈米粒子嵌入PEDOT-PSS三維載體。使用定電量技術,固定電位為-0.2 V (vs. Ag/AgCl),以沈積/共沈積方法在不同濃度之電鍍液中,將Pt/HxMoO3嵌入PEDOT-PSS載體以製備各電極,利用化學元素分析(XPS)和X-ray繞射儀(XRD)分析的結果確認複合電極中含有Pt/HxMoO3粒子。使用XPS分析沈積Pt和Mo元素,結果分別為白金金屬和HxMoO3。來自XRD分析,Pt與HxMoO3之間有很強作用力並且暗示Pt晶格可能受到HxMoO3粒子存在的影響。掃描式電子顯微鏡(SEM)分析的結果可清楚看到Pt/HxMoO3均勻分佈在PEDOT-PSS,其粒子大小大約為50-70 nm。利用循環伏安法及計時安培法測量PEDOT-PSS-Pt/HxMoO3複合電極對甲醇氧化具有較高的電催化能力及較低的CO毒化現象。非結晶形態HxMoO3粒子存在Pt表面,其對甲醇氧化具有較低的CO毒化現象。
    (3) 在聚(磺酸苯乙烯)水溶液中製備水分散性之聚苯胺奈米粒子
    水溶性聚苯胺經由界面聚合合成過程中,苯胺單體(ANI)與聚(磺酸苯乙烯)分別溶於不相溶有機相和水相中並於界面發生聚合反應。為了獲得高分散性聚苯胺奈米粒子,因而調整ANI/PSS 進料莫耳比率。PSS不僅擔任摻雜物而且也擔任基板和分散劑的角色。使用粒徑分析儀(Zetasizer)、穿透式電子顯微鏡(TEM)以及化學元素分析(XPS)檢測分散性之聚苯胺奈米粒子。利用傅利葉紅外線光譜儀(FT-IR)、紫外光/可見光光譜儀(UV-Visible)以及熱重分析儀(TGA)分析分散性之聚苯胺奈米粒子官能基群與熱穩定性。調整不同ANI/PSS進料莫耳比率(4/1, 2/1, 1/1, 1/2, 1/4, 1/8 以及 1/16),可獲得PANI之不同大小粒子。當ANI/PSS進料莫耳比小於1/1時,粒子呈現均勻分佈且大小約為5-20 nm。

    The main purpose of this dissertation is to study dispersible conducting polymer in aqueous poly(styrene sulfonic acid)(PSS) and its application to metal composite electrode for methanol oxidation. The investigations include three parts: electrocatalytic performance for methanol oxidation for PEDOT-PSS-Pt electrode, PEDOT-PSS-Pt/HxMoO3 as the electrocatalyst for methanol oxidation, and preparative dispersible polyaniline nanoparticles in aqueous poly(styrenesulfonic acid). The brief descriptions of three parts in followings:
    (1) Eelectrocatalytic performance of PEDOT-PSS-Pt electrode for methanol oxidation
    A new catalyst electrode in which Pt particles homogeneously distributed into poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) matrix was prepared and its catalytic activity and stability for the oxidation of methanol were studied by using cyclic voltammetry and chronoamperometry. For the comparative purpose, bulk Pt and PEDOT-PSS based electrodes were fabricated and tested. Enhanced electrocatalytic activity toward the oxidation of methanol was noticed when Pt particles were embedded into PEDOT-PSS matrix. A high catalytic current for methanol oxidation (2.51 mA/cm2) was noticed for PEDOT-PSS-Pt electrode in comparison to bulk Pt electrode (0.45 mA/cm2) at +0.6 V (vs. Ag/AgCl). The enhanced electrocatalytic activity might be due to the dispersion of Pt particles into PEDOT-PSS matrix and the synergistic effects between the dispersed Pt particles and the PEDOT-PSS matrix. The morphology and crystalline behavior of PEDOT-PSS-Pt and simple ITO/Pt films were determined by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) and correlated with the enhanced electrocatalytic activity for Pt dispersed in PEDOT-PSS electrode.
    (2) PEDOT-PSS-Pt/HxMoO3 as the electrocatalyst for methanol oxidation
    Nanoparticles of platinum and hydrous molybdenum oxide (Pt/HxMoO3) were successfully electrodeposited onto poly(3,4-ethylenedioxythiophene) -poly(styrene sulfonic acid) (PEDOT-PSS) film by chronocoulometry (0.2 C). Various loadings of Pt/HxMoO3 particles onto the PEDOT-PSS electrode were achieved using the codeposition technique. The existence of Pt/HxMoO3 particles was determined through characterization by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD). XPS results revealed that deposited Pt and molybdenum were metallic Pt and HxMoO3, respectively. XRD analysis showed a decrease of Pt crystalline facets for the incorporation of HxMoO3 into PEDOT-PSS-Pt, indicating a strong interaction between Pt and HxMoO3. SEM results revealed a uniform dispersion of Pt/HxMoO3 particles, with the particle size of 70-90 nm, in the PEDOT-PSS matrix. The cyclic voltammetry study and chronopotentiometry measurements demonstrated that the PEDOT-PSS-Pt/HxMoO3 electrode had superior electrocatalytic activity of methanol oxidation with less CO poisoning. The presence of amorphous HxMoO3 particles on the Pt surface minimized CO poisoning of methanol oxidation.
    (3) Preparative dispersible polyaniline nanoparticles in aqueous poly(styrenesulfonic acid)
    Water dispersible nanoparticles of polyaniline (PANI) have been conveniently synthesized via the interfacial polymerization route using aniline (ANI) with ammonium perxodisulfate in aqueous poly(styrenesulfonic acid) (PSS). Various molar feed ratios of ANI/PSS were employed to attain highly dispersible PANI nanoparticles. PSS was used as an anionic dopant and as a template for the formation of PANI nanoparticles. The dispersed PANI nanoparticles were characterized using a Zetasizer, Transmission Electron Microscopy (TEM), X-ray Photoelectron spectroscopy (XPS). Functional group analysis and the thermal stability of PANI particle dispersions were examined using FT-IR, UV-Visible Spectroscopy, and Thermogravimetry analysis. The particle size of PANI-PSS nanoparticles was controlled by tuning the molar feed ratio of ANI/PSS. A uniform size distribution was obtained with the particle size of 5-15 nm for ANI/PSS ratios less than 1/1.

    中文摘要……………………………………………………….i 英文摘要………………………………………………………iii 誌謝………………………………………………………………...…..vi 目 錄………………………………………………………….vii 圖目錄……………………………………………………xii 表目錄………………………………………………………xvii 符號及縮寫…………………………………………………xviii 第一章、緒論…………………………………………………...1 1-1聚(亞乙基二氧硫代酚)-聚(磺酸苯乙烯)(PEDOT-PSS)…….1 1-1-1 PEDOT與PEDOT-PSS之簡介…....……………………….1 1-1-2 PEDOT-PSS合成方法…………………………………….2 1-1-3水分散性PEDOT-PSS之應用…………………………….3 1-1-3-1 抗靜電塗佈.……………………………………………3 1-1-3-2發光二極體元件………………………………………3 1-1-3-3 電容器…………..…………………………………….4 1-1-3-4 有機太陽能電池陽極緩衝層………………………….6 1-1-3-5電致變色元件………………………………………….8 1-1-3-6直接甲醇燃料電池陽極觸媒..……………………….9 1-2聚苯胺-聚(磺酸苯乙烯)(PANI-PSS)………………………….11 1-2-1 PANI與PANI-PSS之簡介...…….……………………….11 1-2-2 PANI-PSS合成方法…...............…………………………13 1-3奈米複合材料………………………………………………...…14 1-3-1奈米複合材料之簡介………..…………………………14 1-3-2奈米複合材料之特性…………………………….……14 1-3-3奈米複合材料之製備……………………………….…15 1-3-4奈米複合材料之奈米粒子穩定化……………….…18 1-3-5奈米複合材料之發展與應用….………………….…19 1-4 研究動機……………………………………………...…………20 1-4-1電沉積白金在PEDOT-PSS為電極及其對甲醇氧化之催化能力探討…..…………………………………..………20 1-4-2電沉積奈米白金/鉬氧化合物在PEDOT-PSS為電極及其對甲醇氧化之催化能力探討…..………………..………20 1-4-3製備分散性之聚苯胺奈米粒子於聚(磺酸苯乙烯)水溶液…21 第二章、電沉積白金在聚(亞乙基二氧硫代酚)-聚(磺酸苯乙烯)為電極及其對甲醇氧化之催化能力探討……………28 2-1 前言……………………………………………………………...28 2-2 實驗部分………………………………………………………...30 2-2-1藥品與裝置…………………………………………….30 2-2-2電極基材的前處理………………………...………….…30 2-2-3複合電極製備…………………………………….….…31 2-2-4電化學測試……………………………………..….....31 2-2-5掃描式電子顯微鏡……………………………..….....32 2-2-6多功能X光薄膜繞射儀………………………..….....32 2-2-7歐傑電子光譜………………………….……..……….32 2-3 結果與討論……………………………………………………...33 2-3-1 循環伏安法電沉積白金之探討……….………….……33 2-3-2表面形態分析….………………….……………….….…34 2-3-3 複合電極之結晶結構分析…..…………………………….…..35 2-3-4 複合電極之氫氣吸附-脫附特性…………….………… .. 36 2-3-5 甲醇氧化之催化能力探討………………………………..37 2-3-6 電極之毒化影響……….…...……………………………..39 2-4 結論……………………………………………………………...39 第三章、電沉積奈米白金/鉬氧化合物在聚(亞乙基二氧硫代酚)-聚(磺酸苯乙烯)為電極及其對甲醇氧化之催化能力探討….....................................................…50 3-1 前言……………………………………………………………...50 3-2 實驗部分………………………………………………………...51 3-2-1 藥品與裝置………………………………………………51 3-2-2電極基材的前處理……………………………………….52 3-2-3奈米複合電極製備………………………………………52 3-2-4電化學測試………………….……………………….....53 3-2-5化學分析電子光譜…..……………………………….54 3-2-6多功能X光薄膜繞射儀……..…….………..….....54 3-2-7掃描式電子顯微鏡…………………………..….....54 3-2-8交流阻抗頻譜………………………………………...55 3-3 結果討論…………………………………………………...……55 3-3-1複合電極之氫氣吸附-脫附特性……………………..…55 3-3-2化學元素分析…………………..…………….………….57 3-3-3複合電極之結晶結構分析……………………………….58 3-3-4表面形態分析…………………………………………..…59 3-3-5甲醇氧化之催化能力探討…………………….………….60 3-3-6電極之抗毒化探討………………………………………61 3-3-7交流阻抗頻譜分析…………………………….………….62 3-4 結論…………………………………………………………...…63 第四章、製備分散性之聚苯胺奈米粒子於聚(磺酸苯乙烯)水溶液………………………………..…………………………73 4-1 前言……………………………………………………………...73 4-2 實驗部分……………………………………………………...…74 4-2-1 藥品與裝置.........................................................................74 4-2-2以界面聚合法合成PANI-PSS ………………….………75 4-2-3粒徑分析儀……………………………………….….…76 4-2-4穿透式電子顯微鏡……………………………..…………76 4-2-5光譜特性量測……………………………………….….…77 4-2-6熱重分析儀……………………………………….….…78 4-3 結果與討論…………………………………………………...…78 4-3-1合成PANI-PSS奈米粒子……………………..................78 4-3-2 高分子粒徑分佈與表面形態分析.....................................79 4-3-3化學元素分析………………………………………….…80 4-3-4 高分子結構鑑定....... .... ..............................................82 4-3-5分散性PANI-PSS奈米粒子形成機制………………..83 4-3-6紫外光/可見光光譜分析……………………………….84 4-3-7熱穩定性分析………………………………………….86 4-4 結論…………………………………………………………...…86 第五章、總結與展望……………………….…………...……99 參考文獻…………………………………………………….102 著作………………………………………………………….115 期刊論文…………………………………….………………….115 研討會論文……………………………………………………..116 自述…………………………………………………………117

    1. F. Jonas and L. Schrader, Synth. Met., 41, 831(1991) .
    2. M. Dietrich, J. Heinze, G. Heywang, F. Jonas, J. Electroanal. Chem., 369, 87(1994).
    3. S. Kirchmeyer, K. Reuter, J. Mater. Chem., 15, 2077(2005).
    4. A. N. Aleshin, S. R. Williams, A. J. Heeger, Synth. Met., 94, 173(1998).
    5. G. Greczynski, Th. Kugler, M. Kugler, M. Keil, W. Osikowicz, M. Fahlman, W. R. Salancck, J Electron Spectrosc., 121, 1(2001).
    6. G. Greczynski, Th. Kugler, W. R. Salaneck, Thin Solid Films, 354, 129 (1999).
    7. J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, and Y. Yang, Adv. Func. Mater., 15, 203(2005).
    8. F. Jonas, W. Krafft, B. Muys, Macromol. Symp., 100, 169(1995).
    9. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater., 12, 481(2000).
    10. Y. Cao, G. Yu, C. Zhang, R. Meneo, A. J. Heeger, Synth. Met., 87, 171(1997).
    11. F. Jonas and W. Krafft, EP 440 957 (Bayer AG) , Prior: 1990-02-08.
    12. F. Jonas and J. T. Morrison, Synth. Met., 85, 1397(1997).
    13. J. Dresner, RCA Rev., 30, 322 (1969).
    14. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 111, 139(2000).
    15. Y. Cao, G. Yu, C. Zhang, R. Menon, A. J. Heeger, Synth. Met., 87, 171(2000).
    16. J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, D. D. C. Bradley, Synth. Met., 139, 569(2003).
    17. J. C. Scott, J. H. Kaufman, P. J. Brock, R. Dipietor, J. Salem and J. A. Goitia, J. Appl. Phys., 79, 2745(1996).
    18. J. P. Zheng, T. R. Jow, J. Power Source., 62, 155(1996).
    19. B. E. Conway, J. Electrochem. Soc., 138, 1539(1991).
    20. B. V. Tilak and C. P. Chen, J. Electrochem. Soc.,143, 3791(1996).
    21. S. Ghosh, O. Inganas, Adv. Mater., 11, 1214(1999).
    22. L. M. Huang, W. R. Tang, T. C. Wen, Journal of Power Sources, 164, 519 (2007).
    23. C. W. Tang, Appl. Phy. Lett., 48, 183(1986).
    24. G. Yu, C. Zhang, A.J. Heeger, Appl. Phys. Lett., 64, 1540 (1993).
    25. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett., 68, 3120(1996).
    26. A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. Hrhold, Adv. Mater., 12, 1689(2000).
    27. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 384, 372(2004).
    28. J. C. Gustafsson, B. Liedberg and O. Inganas, Solid State Ionics, 69, 145(1994).
    29. H. Pielartzik, H.-W. Heuer, R. Wehrmann and T. Bieringer, Kunststoffe, 89, 135(1999).
    30. H. Pielartzik, H.-W. Heuer, R. Wehrmann and T. Bieringer, Engin. Plastics, 89, 49(1999).
    31. H.-W. Heuer, R. Wehrmann and S. Kirchmeyer, Adv. Funct. Mater., 12, 89(2002).
    32. S. Pekker and A. Janossy, Handbook of conducting polymer, Marcel Dekker, New York., 1, 45(1986).
    33. M. Wigginton, Glass in Architecture, Phaidon, London, UK, 1996.
    34. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 2(1999).
    35. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 95(2001).
    36. A. Hamnett, Catal. Today, 38, 445(1997).
    37. L. Niu, Q. Li, F. Wei, S. Wu, P. Liu and X. Cao, J. Electroanal. Chem., 578, 331 (2005).
    38. M. P. Hogarth et al, Platinum Metals Rev., 46(4), 146(2002).
    39. J. W. Long, R. M. Stroud, K. E. Swider-Lyons and D. R. Rolison, J. Phys. Chem., B104, 9772(2000).
    40. C. A. Bessel, K. Laubernds, N. M. Rodrigues and R. T. L. Baker, J. Phys. Chem. B., 105, 1115(2001).
    41. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel and C. M. Lukehart, J. Phys. Chem. B., 105, 8097(2001).
    42. Z. L. Liu, X. H. Lin, J. Y. Lee, W. Zhang, M. Han and L. M. Gan, Langmuir, 18, 4054(2002).
    43. W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun and Q. Xin, J. Phys. Chem. B., 107, 6292(2003).
    44. Y. C. Liu, X. P. Qie, Y. Q. Huang and W. T. Zhu, Carbon, 40, 2375 (2002).
    45. Y. C. Liu, X. P. Qie, Y. Q. Huang, W. T. Zhu and G. S. Wu, J. Power Sources, 114, 10 (2003).
    46. B. Rajesh, K. R. Thampi, J. M. Bonard, H. J. Mathieu, N. Xanthopoulos and B. Viswanathan, J. Power Sources, 141, 35 (2005).
    47. Y. M. Wu, W. S. Li, J. Lu, J. H. Du, D. S. Lu and J. M. Fu, J. Power Sources, 145, 286 (2005).
    48. F. Y. Xie, Z. Q. Tian, H. Meng and P. K. Shen, J. Power Sources, 141, 211 (2005).
    49. H. S. Park, Y. J. Kim, W. H. Hong and H. L. Lee, J. Membrane Sci., 272, 28 (2006).
    50. H. P. Choo, K. Y. Liew, H. Liu, C. E. Seng and W. A. K. Mahmood, M. Bettahar, J. Mol. Catal., A 191,113 (2003).
    51. S. P. Jiang, Z. Liu, H. L. Tang and M. Pan, Electrochim. Acta, 51, 5721(2006).
    52. D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
    53. J. Langer, Solid State Commun., 26, 839 (1978).
    54. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu and N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 121, 173 (1985).
    55. M. Lapkowski and E. M. Genies, J. Electroanal. Chem., 279, 157 (1990).
    56. K. K. Taylor, C. V. Cole, B. C. Berry, V. Tito. J Appl. Polym. Sci ., 103, 2113(2007).
    57. J. Jang, J. Ha, J. Cho, Adv.Mater., 19, 1772(2007).
    58. S. Li, Y. Cao and Z. Xue, Synth. Met., 20, 141(1987).
    59. B. D. Malhotra, S. Ghosh and R. Chandra, J. App. Polym. Sci., 40, 1049(1990).
    60. A. R. Hopkins, D. D. Sawall, R. M. Villahermosa, R.A. Lipeles, Thin Solid Films, 469, 304(2004).
    61. J. H. Hwang and S. C. Yang, Synth. Met., 29, E271(1989).
    62. P. Pfluger, O. B. Street, J. Chem. Phys., 80, 544(1984).
    63. Boutonet, J. Colloid Interf. Sci., 148, 80(1992).
    64. W. P. Halperin, Rev. of modern Phys., 58, 532(1986).
    65. D. L. Feldhein, C. D. Keating, Chem. Soc. Rev., 27, 1(998).
    66. Y. W. Du, J. Appl. Phys., 63, 4100(1988).
    67. L. Brus, Nature, 351, 301(1991).
    68. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett., 56, 2379(1990).
    69. 徐國財、張立德,奈米複合材料,化學工業出版社(2002).
    70. E. P. Giannelis, Adv. Mater., 8, 29(1996).
    71. S. Komarneni, J. Mater. Chem., 2, 1219(1992).
    72. R. Roy, S. Komameni, D. M. Roy, Mater. Res. Soc. Symp. Proc., 22, 347(1984).
    73. J. Wen, G. L. Wilkes, Chem. Mater., 8, 1667(1996).
    74. D. Y. Godovsky, Adv. Polym. Sci., 119, 79(1995).
    75. B. M. Novak, Adv. Mater., 5, 422(1993).
    76. R. Yokota, R. Horiuchi, M. Kochi, H. Soma, I. Mita, J. Polym. Sci.: Polym. Letter, 26, 215(1988).
    77. W. S. Shi, H. Y. Peng, L. Xu, N. Wang, Y. H. H. Tang, S. T. Lee, Adv. Mater., 12, 1927(2000).
    78. S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, M. F. Bertino, Chem. Mater., 17, 5941(2005).
    79. A. A. Athawale, S. V. Bhagwat, P. P. Katre, Sensors and Actuators B, 114, 263(2006).
    80. T. D. Castillo-Castro, E. Larios-Rodriguez, Z. Molina-Arenas, M. M. Castillo-Ortega, J. Tanori, Composites:Part A, 38, 107(2007).
    81. Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang, L. Jin, Biosensors and Bioelectronics, 21, 1996(2006).
    82. X. Luo, A. J. Killard, A. Morrin, M. R. Smyth, Analytica Chimica Acta, 575, 39(2006)
    83. Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem., 121, 105(1996).
    84. X. Li, G. Lu, S. Li, J. Mater. Sci. Lett., 15, 397(1996).
    85. N. M. Markovic, T. J. Schmidt, V. Stamenkovic, P. N. Ross, Fuel Cell, 1, 105 (2001).
    86. A. K. Shukla, R. K. Raman, Annu. Rev. Mater. Res., 33, 155(2003).
    87. S. K. Mondal, R. K. Raman, A. K. Shukla, N. Munichandraiah, J. Power Sources, 145, 16(2005).
    88. A. Hamnett, in: R.G. Compton, G. Hancock (Eds.), Chemical Kinetics, Elesiver, Amsterdam, 37, 593(1999).
    89. R. Parson, T. Vander Noot, J. Electroanal. Chem., 257, 1(1988).
    90. T. Iwasita, Electrochim. Acta, 47, 3663(2002).
    91. H. Wang, T. Loffler, H. Baltruschat, J. Appl. Elctrochem., 31, 759(2001).
    92. T. R. Ralph, M. P. Hogarth, Platinum Met. Rev., 46, 117(2002).
    93. B. Rajesh, K. R. Thampi, J. –M. Bonard, A. J. McEvoy, N. Xanthopoulos, H. J. Mathieu, B. Viswanathan, J. Power Sources, 133, 155(2004).
    94. D. Profeti, P. Olivi, Electrochim. Acta, 49, 4979(2004).
    95. L. H. Mascaro, D. Goncalves, L. O. S. Bulhoes, Thin Solid Films, 461, 243(2004).
    96. S. M. Golabi, A. Nozad, J. Electroanal. Chem., 521, 161(2002).
    97. L. Niu, Q. Li, F. Wei, X. Chen, H. Wang, J. Electroanal. Chem., 544, 121(2003).
    98. S. Ghosh, O. Inganas, Adv. Mater., 11, 1214(1999).
    99. L. Adamczyk, P. J. Kulesza, K. Miecznikowski, B. Palys, M. Chojak, D. Krawczyk, J. Electrochem. Soc., 152, E98(2005).
    100. Z. Qi, P. G. Pickup, Chem. Commun., 1, 15(1998).
    101. A. B. R. Mayer, J. E. Mark, J. Polym. Sci. A, 35, 3151(1997).
    102. A. A. Antipov, G. B. Sukhorukov, Y. A. Fedutik, J. Hartmann, M. Giersig, H. Mohwald, Langmuir, 18, 6687(2002).
    103. L. Niu, Q. Li, F. Wei, S. Wu, P. Liu, X. Cao, J. Electroanal. Chem., 578, 331(2005).
    104. K. Bouzek, K. –M. Mangold, K. Juttner, Electrochim. Acta, 46, 661(2000).
    105. F. Blanchard, B. Carre, F. Bonhomme, P. Biensan, H. Pages, D. Lemordant, J. Electroanal. Chem., 569, 203(2004).
    106. A. B. P. Mayer, Polym. Adv. Technol., 12, 96(2001).
    107. N. Toshima, T. Yonezawa, New J. Chem., 1998, p. 1179.
    108. N. Toshima, Y. Shiraishi, T. Teranishi, M. Miyake, T. Tominaga, H. Watanabe, W. Brijoux, H. Bonnemann, G. Schmid, Appl. Oragnomet. Chem., 15, 178(2001).
    109. M. Lin, W. Yu, H. Lin, T. Zheng, J. Colloid Interface Sci., 214, 231(1999).
    110. J. –H. Choi, K. –W. Park, H. –K. Lee, Y. -M. Kim, J. –S. Lee, Y. –E. Sung, Electrochim. Acta, 48, 2781(2003).
    111. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, J. Phys. Chem. B, 109, 7330(2005).
    112. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic, P. N. Ross, Electrochim. Acta, 47, 3787(2002).
    113. T. J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb, R. J. Behm, J. Electrochem. Soc., 145, 2354(1998).
    114. A. Chen, D. J. L. Russa, B. Miller, Langmuir, 20, 9695(2004).
    115. W. Li, J. Lu, J. Du, D. Lu, H. Chen, H. Li, Y. Wu, Electrochemistry Comm., 7, 406(2005).
    116. R. Parsons, T. Vander Noot, J. Electroanal. Chem., 257, 9(1988).
    117. M. Umeda, M. Kokubo, M. Mohamedi, I. Uchida, Electrochim. Acta 48, 1367(2003).
    118. N. M. Arkosic, H. A. Gasteiger, P. N. Ross Jr., Electrochim. Acta 40, 91(1995).
    119. Z. D. Wei, S. H. Chan, J. Electroanal. Chem., 569, 23(2004).
    120. A. Yassar, J. Roncali, F. Garnier, J. Electroanal. Chem., 255, 53(1988).
    121. A. Dalmia, C. L. Lineken, R. F. Savinell, J. Collid & Interface., 205, 535(1998).
    122. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. Elsayed, Science, 272, 1924(1996).
    123. T. S. Ahmadi, Z. L. Wang, A. Henglein, M. A. Elsayed. Chem. Mater., 8, 1161(1996).
    124. T. D. Jenvi, E. M. Stuve, in: J. Lipkowsi, P. N. Poss (Eds.), Electrocatalysis, Wiley, New York, 1998, p. 75.
    125. V. E. Kazarinov, V. N. Andreev, M. A. Spitsyn, A. P. Mayorov, Electrochim. Acta, 35, 1459(1990).
    126. A. S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells, 1, 133(2001).
    127. K. Y. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang, J. Mater. Chem., 14, 505(2004).
    128. W. Vielstich, J. Braz. Chem. Soc., 14, 503(2003).
    129. N. M. Markovic, H. A. Gasteiger, C. A. Lucas, I. M. Tidswell and P. N. Ross, Electrochim. Acta, 40, 91(1995).
    130. G. Wu, L. Li, B. Q. Xu, Electrochim. Acta, 50, 1(2004).
    131. M. J. Gonzalez, C. H. Peters, M. S. Wrighton, J. Phys. Chem. B, 105, 5470(2001).
    132. H. Massong, H. Wang, G. Samjeske, H. Baltruschat, Electrochim. Acta, 46, 701(2000).
    133. W. S. Li, L. P. Tian, Q. M. Huang, H. Li, H. Y. Chen and X. P. Lian, J. Power Sources, 104, 281(2002).
    134. J. A. Shropshire, J. Electrochem. Soc., 112, 465(1965).
    135. J. Lu, W. S. Li, J. H. Du, J. M. Fu, J. New Mat. Electrochem. Systems, 8, 5(2005).
    136. Y. Wang, E. R. Fachini, G. Cruz, Y. Zhu, Y. Ishikawa, J. A. Colucci and C.R. Cabrera, J. Electrochem. Soc., 148, C222(2001).
    137. S. Mukerjee and R. C. Urian, Electrochim. Acta, 47, 3219(2002).
    138. C. W. Kuo, L. M. Huang, T. C. Wen, A. Gopalan, J. Power Sources, 160, 65(2006).
    139. S. Kim, S. J. Park, Solid State Ionics, 178, 1915(2008).
    140. A. N. Golikand, S. M. Golabi, M. G. Maragheh, L. Irannejad, J. Power Sources, 145, 116(2005).
    141. A. Malinauskas, Synth. Met., 107, 75(1999).
    142. C. Sivakumar, Electrochim. Acta, 52, 4182(2007).
    143. S. Ghosh, O. Inganas, Adv. Mater., 11, 1214(1999).
    144. F. Blanchard, B. Carre, F. Bonhomme, P. Biensan, H. Pages, D. Lemordant, J. Electroanal. Chem., 569, 203(2004).
    145. E. I. Santiago, G. A. Camara, and E. A. Ticianelli, Electrochim. Acta, 48, 3527(2003).
    146. T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda, and Y. Miyazaki, Electrochem. Commun., 4, 442(2002).
    147. C. Ritter, W. Muller-Warmuth, R. Schollhorm, J. Chem. Phys., 83, 6130(1985).
    148. G. Greczynski, T. Kugler, and W. R. Salaneck, Thin Solid Films, 354, 129(1999).
    149. S. K. M. Jonsson, W. R. Salaneck, M. Fahlman, J. Mater. Res., 18, 1219(2003).
    150. J. Hwang, F. Amy and A. Kahn, Org. Electron., 7, 387(2006).
    151. W. Deng, L. Yang, D. Fujita, H. Nejoh, and C. Bai, Appl. Phys. A, 71, 639(2000).
    152. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, in: G. E. Muilenberg (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, 1979.
    153. L. Li, H. X. Wang, B.Q. Xu, J. L. Li, T. H. Lu. Z.Q. Mao, Acta Chimica. Sinica., 61, 818(2003).
    154. Y. S. Kim, H. J. Ahn, H. S. Shim, S. H. Nam, T. Y. Seong and W. B. Kim Electrochem. Solid-State Lett., 10, (8), A180(2007).
    155. J. F. Drillet, R. Dittmeyer, K. Juttner, L. Li, K. M. Mangold, Fuel Cells, 6, 432( 2006).
    156. S. Mukerjee, J. Mcbreen, J. Electrochem. Soc., 146, 600(1999).
    157. M. Watanable, S. Motoo, J. Electroanal. Chem., 60, 267(1975).
    158. R. K. Paul, C. K. S. Pillai, B. R. Mattes, Synth. Met., 114, 27(2000).
    159. M.T. Nguyen, P. Kasai, J. L. Miller, A. F. Diaz, Macromolecules, 27, 3625(1994).
    160. W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., Faraday Trans., 1986, 82(2385).
    161. N. V. Blinova, J. Stejskal, M. Trchova, J. Prokes, M. Omastova, European Polymer Journal, 43, 2331(2007).
    162. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, S. H. Lee, Nature, 441, 65(2006).
    163. M. K. Park, K. Onishi, J. Locklin, F. Caruso, R. C. Advincula, Langmuir, 19, 8550(2003).
    164. O. Ngamna, A. Morrin, A. J. Killard, S. E. Moulton, M. R. Symth, G. G. Wallace. Langmuir, 23, 8569(2007).
    165. X. Li, N. Dai, G. Wang, X. Song, J. Appl. Polym. Sci., 107, 403(2008).
    166. W. J. Bae, K. H. Kim, Y. H. Park, W. H. Jo, Chem. Commun., 2768(2003).
    167. F. J. Touwslager, N. P. Willard, D. M. De Leeuw, Appl. Phys. Lett., 81, 4556 (2002).
    168. T. Linfdors, A. Ivaska, Anal. Chem., 79, 608(2007).
    169. S. A. Chen, H. T. Lee, Macromolecules, 28, 2858(1995).
    170. Y Guo, Y Zhou, European Polymer Journal, 43, 2292(2007).
    171. D. H. Reneker, I. Chum, Nanotechnology, 7, 216(1996).
    172. J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc., 125, 314(2003).
    173. J. Huang, R. B. Kaner, Chem. Commun., 367(2006).
    174. A. R. Hopkins, D. D. Sawall, R. M. Villahermosa, R. A. Lipeles, Thin Solid Films, 469, 304(2004).
    175. F. J. Liu, L. M. Huang, T. C. Wen, A. Gopalan, J. S. Hung, Materials Letters, 61, 4400(2007).
    176. R. C. Y. King, F. Roussel, Synth. Met., 153, 337(2005).
    177. W. Li, J. A. Bailey, H. L. Wang, Polymer, 47, 3112(2006).
    178. X. Li, Y. Zhao, T. Zhuang, G. Wang, Q. Gu, Colloids and Surfaces A Physicochem. Eng. Aspects, 295, 146(2007).
    179. V. Mottaghitalab, G. M. Spinks, G. G. Wallace, Polymer, 47, 4996(2006).
    180. X. Lu, Y. Yu, L. Chen, H. Mao, L. Wang, W. Zhang, Y. Wei, Polymer, 46, 5329(2005).
    181. J. Haung, R. B. Kaner, J. Am. Chem. Soc. 126, 851(2004).
    182. H. S. Moon, J. K Park, J, Polym. Sci. Part A Polym. Chem., 36, 1431(1998).
    183. J. Huang and R. B. Kaner, Angew Chem. Int. Ed, 43, 5817(2004).
    184. Y. Wang and X. Jing, J. Phys. Chem. B, 112, 1157(2008).
    185. X. Jing, Y. Wang, D. Wu, J. Qiang, Ultrason. Sonochem., 14, 75(2007).
    186. D. Han, Y. Chu, L. Yang, Y. Liu, Z. Lv, Colloids Surfaces A physciochem Eng Aspects, 259, 179(2005).
    187. X. Lu, H. Gao, J. Chen, D. Chao, W. Zhang and Y. Wei, Nanotechnology, 16, 113(2005).
    188. K. P. Lee, A. Gopalan, S. H.Lee and M. S. Kim. Nanotechnology, 17, 375(2006).
    189. J. C. Chiang, A. G. MacDiarmid, Synth. Met., 13, 193(1986).
    190. E. T. Kang, K. G. Neoh, S. H. Khor, K. L. Tan and B. T. G. Tan, J. Chem. Soc. Chem. Commun., 695(1989).
    191. E. T. Kang, K. G. Neoh, T. C. Tan, S.H. Khor and K. L. Tan, Macromolecules, 23, 2918(1990).
    192. C. Barthet, M. Guglielmi, P. Baudry, J. Electroanal. Chem., 431, 145(1997).
    193. Y. K. Zhou, B. L. He, W. J. Zhou, H. L. Li. J. Electrochem. Soc., 151, A1052(2004).
    194. S. N. Kumar, G. Bouyssoux, F. Gaillard, Surf. Interface. Anal., 15, 531(1990).
    195. S. N. Kumar, F. Gaillard, G. Bouyssoux, A. Sartre, Synth.Met., 36, 111(1990).
    196. L. D. D. Pra, S. Demoustier-Champagne, Thin soild Films, 479, 321(2005).
    197. K. S. Ho, T. H. Hsieh, C. W. Kuo, S. W. Lee, J. J. Lin, Y. J. Huang, J. Polym. Sci. Part A Polym. Chem., 43, 3116(2005).
    198. A. G. MacDiarmid, A. J. Epstein, Synth. Met., 69, 85(1995).
    199. G. S. Manning, J. Chem. Phys., 51, 924(1969).
    200. G. S. Manning, J. Chem. Phys., 51, 3249(1969).
    201. J. D. Wells, Biopolymers, 12, 223(1973).
    202. A. V. Dobrynin, M. Rubinstein, Prog. Polym.Sci., 30, 1049(2005).
    203. B. J. Kim, S. G. Oh, M. G. Han, S. S. Im. Synth. Met., 122, 297(2001).
    204. M. G. Han, S. K. Cho, S. G. Oh, S. S. Im, Synth. Met., 126, 53(2002).
    205. J. Yang, Y. Ding, G. Chen, C. Li, Eur. Polym. J., 43, 3337(2007).
    206. K. S. Ho, Synth. Met., 126, 151(2002).

    下載圖示 校內:2010-12-10公開
    校外:2014-12-10公開
    QR CODE