| 研究生: |
李宗穎 Li, Tsung-Ying |
|---|---|
| 論文名稱: |
中孔洞金屬氧化物之合成研究 Synthesis of Mesoporous Metal Oxides |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 中孔洞 、金屬氧化物 |
| 外文關鍵詞: | mesoporous, metal oxide |
| 相關次數: | 點閱:129 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究是以自組合材料化學為理論基礎,使用有機界面活性劑當模板,加上矽酸鈉當無機物之來源且在接近中性的條件下(pH=4.5~5.5)合成中孔洞氧化矽材料。先將氧化矽及金屬氧化物之前驅物及界面活性劑溶於酸性的水溶液中(pH < 2.0),酸性條件下氧化矽和金屬氧化物之聚合相當緩慢。攪拌數分鐘後,此溶液倒入大量之緩衝溶液中(pH=4.5~5.5),由於在緩衝溶液中氧化矽及金屬化合物在界面活性劑之催化下,均勻且快速地成長,而生成奈米尺度的氧化矽材料。本研究藉此並探討一些變因,改變界面活性劑的濃度、改變矽酸鈉(S.S.)的濃度以及加入PEG10000高分子作為分散劑並且加入各種金屬(如Al、Ti、Zr)等研究因素,其中將利用三共聚高分子P123(EO20PO70EO20)當作有機模板以合成出不同孔洞大小之含金屬氧化物的中孔洞氧化矽材料。
中孔洞碳材(Mesoporous Carbon)因具有高表面積,大孔洞尺度堅韌的介尺度結構,因此可利用其作為固態模板來製作出介尺度結構材料。特別是對於不易找到適當界面活性劑當模板的金屬氧化物孔洞材料的合成,中孔洞碳材是一值得探究的固體模板,相較於過去的研究成果雖有少數是以界面活性劑當模板的成功例子,但反應時需控制濕度、溫度等相當嚴苛的條件才能成功,且再現性不高。因此提出固體的中孔洞模板的構思。本研究是藉由簡易的含浸法合成中孔洞金屬氧化物材料(如MgO、Fe2O3、Al2O3、TiO2、ZrO2)。
合成方法是混合各類型中孔洞碳材和金屬前驅物,在有機極性溶劑中調整pH值在酸性條件下,待溶劑揮發後,金屬前驅物可被吸收於孔洞中,而因為中孔洞碳材的存在,金屬前驅物被限制於孔道間,經過高溫煅燒,而在這過程中先在(200~400) oC的條件下,促使結構穩定的金屬氧化物的生成。再經由(600~700) oC的程序,碳材可被移除,並同時可提昇金屬氧化物之結晶度,最後生成高結晶度、大表面積與孔體積的中孔洞金屬氧化物孔洞材料。
Abstract
Recently, neutral surfactant-templated mesoporous silicas have attracted much attention because the neutral surfactants are biodegradable and natural friendly. In addition, the mesoporous silicas prepared with the neutral surfactant possess thicker wall thickness than that synthesized with cationic surfactant. In general, a highly acidic condition (pH< 2.0) was required to fabricate the neutral surfactant-templated silicas. It is well known that most of metal ions are well dissolved in highly acidic solution but fast condenses to metal oxides in neutral and alkaline aqueous solution.
Introducing metal oxides into the mesoporous silica is relatively difficult to be achieved in a highly acidic solution. In this study, we proposed a simple method by mixing a acidic water solution of silicate, metal alkoxides, P123 surfactant with a alkaline solution to effectively incorporate the heteroatom of Al, Ti, or Zr into triblock copolymer templated mesoporous silicas in a near neutral reaction media (pH ~5.0) at room temperature.
In addition to the synthesis of metal-oxide containing mesoporous silicas, we used the mesoporous carbons of high surface area, large pore volume, highly stable carbon framework and easy removal by calcination as solid template to prepare the porous metal oxides. By using a simple convenient impregnation method, mixing the mesoporous carbons with metal ions or metal alkoxides in an acidic ethanol solution, drying at 60 oC gave the metal ions-containing mesoporous carbons. After annealing at 200–400 oC, and calcination at 600–700 oC the mesoporous metal oxides was prepared. This mesoporous carbon-templating technique can be applied to various metal oxides, such as MgO、α-Fe2O3、Al2O3、TiO2、ZrO2. Therefore, the porous metal oxides with high surface area, large pore volume and high crystalline have been efficiently prepared for the potential applications in catalysts and fuel cells.
參 考 文 獻
1.D. Attwood, A. T. Florence,Surfactant Syste m: their Chemistry, Pharmacy and
Biology, Chapman and Hall, New York, 1983.
2.L. Sepulveda, J. Cortes, American Chemistry Society, 1985, 89, 5322.
3.F. R. Husson, J. Phys. Chem., 1964, 68, 3504.
4.R. R. Ying, C. p. Mehnert, and M. S. Eong, Angew. Chem., 1999, 38, 56.
5.T. F. Todros, Surfactants, Academic Press : London, 1984.
6.B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous
Solution, Springer-Verlag, Heidelberg, 1980.
7.B. Naim, A Hydrophobic Interaction, Plnnum Press, New York, 1980.
8.C. Tanford, The Hydrophobic Effect, 2nd edn. Wiley, New York, 1980.
9.J. N. Israelachvili, S. Marcelja and R. G. Horn, Q. Rev. Biophys, 1980, 13,
121.
10.D. J. Mithchell and B. W. Ninham, J. Chem. Soc. Farad. Trans. II, 1981, 77,
1264.
11.R. K. Iler, The Chemistry of Silica, John Wiley, New Nork, 1979.
12.O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Freng, T. E. Gier, P.
Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey. Chem.
Mater. 1994, 6, 1176.
13.C. J. Brinker and G. W. Scherer, J. Non Cry. Solids, 1985, 70, 301.
14.Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U.
Acc. Chem. Res. 1998, 31, 485.
15.Murugavel, R.; Roesky, H. W. Angew. Chem., Int. Ed. Engl., 1997,
36, 477.
16.Clerici, M. G.; Bellussi, G.; Romano, U. J. Catal. 1991, 129, 1.
17.Khouw, C. B.; Dartt, C. B.; Li, X.; Davis, M. E. Symposium on New Catalytic
Chemistry Utilizing Molecular Sieves, 206th National Meeting; American
Chemical Society: Washington, DC, 1993.
18.Van der Waal, J. C.; Kooyman, P. J.; Jansen, J. C.; van Bekkum,
H. Microporous Mesoporous Mater. 1998, 25 (1-3), 43.
19.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge,
C. T. J. Am. Chem. Soc. 1992, 114, 10834.
20.Corma, A.; Navarro, M. T.; Pariente, J. P. J. Chem. Soc., Chem.
Commun. 1994, 147.
21.Alba, M. D.; Luan, Z.; Klinowski, J. J. Phys. Chem. 1996, 100, 2178.
22.Rhee, C. H.; Lee, J. S. Catal. Today 1997, 38, 213.
23.Zhang, W.; Fro¨ba, M.; Wang, J.; Tanev, P. T.; Wong, J.; Pinnavaia, T. J.
J. Am. Chem. Soc. 1996, 118, 9164.
24.B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 2001, 13,
552.
25.D. R. Rolison, SCIENCE, 2003, 299, 1698.
26.N. W. Cant, and W. K. Hall, J. Phys. Chem., 1997, 75, 2914.
27.M. Haruta, N. Yamada, T. Kobatashi, and S. Iijima, J. Catal, 1989, 115, 301.
28.C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New
York 1988.
29.H. C. Foley, J. Microporous Mater., 1995, 4, 407.
30.T. Kyotani, Carbon, 2000, 38, 269.
31.H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 1996,
8, 454.
32.W. Lu, D. D. L. Chung, Carbon, 1997, 35, 427.
33.Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 2000, 12, 62.
34.S. Han, K. Sohn, T. Hyeon, Chem. Mater., 2000, 12, 3337.
35.C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 1999, 146, 3639.
36.D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater.
2000, 12, 3397.
37.Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr, 1986, 352, 3.
38.M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104,
7960.
39.Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H.
J. Shin and R. Ryoo, Nature, 2000, 408, 449.
40.M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B,2000, 104,
7960.
41.J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
42.W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
43.M. J. Fuller, M. E. Warwick, J. Catal., 1973, 29, 441.
44.F. Sala, F. Trifiro, J. Catal., 1974, 34, 68.
45.M. Itoh, H. Hsttori, K. Tanabe, J. Catal. 1967, 43, 192.
46.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,
Nature, 1992, 359, 710.
47.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D.
Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L.
Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 .
48.A. Sayari, Chem. Mater., 1996, 8, 1840.
49.R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
50.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39,
63.
51.M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996, 100, 9906.
52.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci.
Catal. 1994, 84, 69.
53.J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
54.Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R.
Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature, 1994, 368, 317.
55.P. T. Tanev, T. J. Pinnavaia, Science, 1995, 267, 865.
56.R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec, Adv. Mater., 2001, 13(9), 677.
57.C. R. Bansal, J. B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New
York, 1988.
58.M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B., 2000, 104,
7960.
59.J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
60.W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
61.J. Lee, K. Sohn and T. Hyeon, J. Am. Chem. Soc., 2001, 123, 5146.
62.Xiaoming Sun, Junfeng Liu and Yadong Li, Chem. Eur. J.,2006, 12, 2039.
63.W. C. Li, A. H. Lu, C. Weidenthaler and F. Schuth, Chem. Mater., 2004, 16,
5676.
64.J. C. Yu, A. Xu, L. Zhang, R. Song, and L. Wu, J. Phys. Chem. B, 2004, 108,
64.
65.K. Shi, Y. Chi, H. Yu, B. Xin, H, Fu, J. Phys. Chem. B, 2005, 109, 2546.
66.Y. Xiong, Y. Xie, Z. Li, R. Zhang, J, Yang, C. Wu, New J. Chem, 2003, 27,
588.
67.By Carlos R. Rambo and Heino SieBer, Adv. Mater., 2005, 17, No. 8, 2088
68.Zhaorong Zhang, Randall W. Hicks, Thomas R. Pauly, and Thomas J. Pinnavaia,
J. Am. Chem. Soc., 2002, 124, 1292.
69.Zhaorong Zhang and Thomas J. Pinnavaia, J. Am. Chem. Soc., 2002, 124, 12294.
70.Tie-Zhen Ren, Zhong-Yong Yuan, and Bao-Lian Su, Langmuir, 2004, 20, 1531.
71.J. Pang, X. Li, D. Wang, Z. Wu, V. T. John, Z. Yang and Y. Lu, Adv. Mater.,
2004, 16, No. 11, 2088
72.Kun Hou, a Bozhi Tian, b Fuyou Li, c Zuqiang Bian, a Dongyuan Zhaob and
Chunhui Huang J. Mater. Chem., 2005, 15, 2414.
73.M. R. Ranade, S. H. Elder and A. Navrotsky Chem. Mater., 2002, 14, 1107.
74.M. Kagawa, Y. Synon, J. Am. Ceram. Soc., 1986, 69, 50.
75.Man Chien Chao, Hong Ping Lin, Bo Wen Cheng and Chi Feng Cheng, Chem.
Lett., 2005, 34, 204.