簡易檢索 / 詳目顯示

研究生: 林雅雯
Lin, Ya-Wen
論文名稱: 脈衝電鍍頻率對銅鍍膜特性之研究
Effect of Pulse Plating Frequency on Properties of Electrodeposited Copper Films
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: EBSD脈衝電鍍雙晶
外文關鍵詞: EBSD, pulse plating, twin, copper
相關次數: 點閱:106下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相對於直流電鍍,脈衝電鍍法可利用較大之電流密度而不至於使鍍層被燒壞或形成粉晶,並製備出具有高密度生長雙晶(growth twin)的純銅薄膜,可同時實現超高強度和高導電性,在微機電的相關應用上相當廣泛。
    本研究主要以改變脈衝電鍍的頻率製備出具有高密度生長雙晶(growth twin)的銅鍍層,再利用XRD、EBSD (Electron Backscatter Diffraction Pattern)、four-point probe及nanoindenter分析,探討參數的改變,對於鍍層之優選方位、微觀組織(如晶粒尺寸、雙晶密度、優選方位)、電性、機械性質等的影響。
    實驗結果發現,以不同脈衝電鍍頻率所製備之銅鍍層具有<100>、<111> fiber,除此之外,當脈衝電鍍頻率增加時 (11Hz-454Hz),晶粒大小 (1.5 ~ 5.0 μm) 與雙晶密度 (44~ 72 %) 也隨之增加,使得銅鍍層的電阻率 (5.8 ~ 4.3 μΩ-cm) 略為減少,機械性質方面,由於高角度晶界以及雙晶晶界的影響,楊氏模數由146 GPa下降至76 GPa,鍍層硬度則約為2 GPa。

    Comparing to DC plating, pulse plating using larger current density provides an alteration to fabricate a high density of growth twins at the same time having high strength and high electrical conductivity. It has popularly applications in MEMS (micro-electro mechanical devices) in the future.
    In this study, we varied the pulse electrodeposited frequency to fabricate the copper films with high density of growth twin. XRD、EBSD (electron backscattering diffraction)、four point probe and nanoindentation, were used to analyze the properties of copper films, ie. preferred orientation, microstructure (grain size, twin density, preferred orientation), electric properties, and mechanical properties.
    The results indicate that the deposited copper films reveal <100> and <111> fiber texture. Besides, as the pulse frequency increased from 11Hz to 454Hz, the grain size and twin fraction are in the range of 1.5 - 5.0 μm and 44- 72 %, respectively. The electric resistivity is between 5.8 and 4.3 μΩ-cm. For the mechanical properties, the Young’s modulus is in the range of 76-146 GPa, and the hardness are approximately 2 GPa by the effect of high angle grain boundaries and twin boundaries.

    摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 第一章 前言 1 第二章 文獻回顧及相關基礎理論 4 2.1脈衝電鍍雙晶銅 4 2.1.1脈衝電鍍理論 4 2.1.2奈米雙晶銅 7 2.2優選方位 10 第三章 材料與實驗步驟 12 3.1 試片製備 12 3.1.1 電鍍實驗槽系統 12 3.1.2 電極製備 13 3.1.3 電鍍參數 14 3.2 實驗流程 17 3.3 分析方法 18 3.3.1 X-ray繞射分析 18 3.3.2 EBSD之分析 18 3.3.3 電性之量測 19 3.3.4 奈米探針壓痕試驗 20 第四章 實驗結果 25 4.1 XRD分析結果 25 4.1.1 極圖/反極圖 25 4.1.2 方位分布函數(ODF) 28 4.2 EBSD分析結果 31 4.2.1 Image Quality Mapping(IQ) 31 4.2.2 Orientation Image Mapping(OIM) 42 4.2.3 極圖/反極圖 53 4.2.4 晶粒大小 58 4.2.5 晶界特徵 65 4.3 電性分析結果 77 4.4奈米探針壓痕試驗分析結果 81 第五章 討論 83 5.1 脈衝電鍍頻率對優選方位之影響 83 5.2 脈衝電鍍頻率對微觀組織之影響 86 5.3 脈衝電鍍頻率對導電度之影響 88 5.4 脈衝電鍍頻率對機械性質之影響 90 第六章 結論 92 參考文獻 93

    [1] 張程皓,銅的蝕刻與保護行為之研究,國立中央大學碩士論文,2007。
    [2] L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Nano- sized twins induce high rate sensitivity of flow stress in pure copper, Acta Materialia, 53 (2005), 2169.
    [3] C.Y. Lee, J.H. Lee, D.H. Choi, H.J. Lee, H.S. Kim, S.B. Jung, and W.C. Moon, Effects of nodule treatment of rolled copper on the mechanical properties of the flexible copper-clad laminate, Microelectronic Engineering, 84 (2007), 2653.
    [4] N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu, Scripta Materialia, 64 (2011), 149.
    [5] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, 304 (2004), 422.
    [6] L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science, 323 (2004), 607.
    [7] M. Dao, L. Lu, Y.F. Shen, and S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nano-scale twins, Acta Materialia, 54 (2006), 5421.
    [8] X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth, Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films, Applied Physics Letters, 84 (2004), 1096.
    [9] X. Zhang, A. Misra, H. Wang, X.H. Chen, L. Lu, K. Lu, and R.G. Hoagland, High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins,Applied Physics Letters, 88 (2006), 173116.
    [10] O. Anderoglu, A. Misra, H. Wang, and X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins, Journal of Applied Physics, 103 (2008), 094322.
    [11] X. Zhang, A. Misra, H. Wang, J.G. Swadener, A.L. Lima, M.F. Hundley, and R.G. Hoagland, Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins, Applied Physics Letters, 87 (2005), 233116.
    [12] X. Zhang, O. Anderoglu, R.G. Hoagland, and A. Misra, Nanoscale growth twins in sputtered metal films, Journal of the Minerals, Metals and Materials Society, 60 (2008), 75.
    [13] O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, and X. Zhang, Epitaxial nanotwinned Cu films with high strength and high conductivity, Applied Physics Letter, 93 (2008), 083108.
    [14] O. Anderoglu, A. Misra, F. Ronning, H. Wang, and X. Zhang, Significant enhancement of the strength-to –resistivity ratio by nanotwins in epitaxial Cu films, Journal of Applied Physics, 106 (2009), 024313.
    [15] 施博中,脈衝電流對電解拋光之影響,私立元智大學碩士論文,2004。
    [16] N.V. Mandich, Pulse and Pulse-Reverse Electroplating, Metal Finishing, 98 (2000), 375.
    [17] L.J. Durney, Electroplating Engineering Handbook (fourth edition), 1984, Chapter 31.
    [18] J.C. Puipple, and F. Leaman, Theory and Practice of Pulse Plating, American Electroplaters and Surface Finishers Society, 1986, Chapter 3.
    [19] K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Materialia, 51 (2003), 5743.
    [20] Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High tensile ductility in a nanostructure metal, Nature, 419 (2002), 912.
    [21] X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury, Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning, Acta Materialia, 52 (2004), 995.
    [22] C.G. Valenzuela, Stacking-fault energy and interfacial energy of coherent twin boundaries in copper and brass, Transactions of the Metallurgical Society of AIME, 233 (1965), 1911.
    [23] D. McLean, Grain boundaries in metals, Oxford University Press (London) , 1957.
    [24] J.W. Christian, and S. Mahajan, Deformation twinning, Progress in Materials Science, 39 (1995), 1.
    [25] C.J. Youngdahl, J.R. Weertman, R.C. Hugo, and H.H. Kung, Deformation behavior in nanocrystalline copper, Scripta Materialia, 44 (2001), 1475.
    [26] M.A. Meyers, and K.K. Chawla, Mechanical behavior of materials pentice hall, NJ, 1999.
    [27] A.M. Hodge, Y.M. Wang, and T.W. Barbee, Large scale production of high purity, ultra-fine grain copper, Materials Science and Engineering A, 429 (2006), 272.
    [28] C.M. Lee, J.H. Lim, S.M. Hwang, E.C. Park, J.H. Shim, J.H. Park, J.H. Joo, and S.B. Jung, Characterization of flexible copper laminates fabricated by Cu electro-plating process, Transactions of Nonferrous Metals Society of China, 19 (2009), 965.
    [29] R. Blonde, H.L. Chan, N.A. Bonasso, B. Bolle, T. Grosdidier, J. Lu, Evolution of texture and microstructure in pulsed electro-deposited Cu treated by surface mechanical attrition treatment, Journal of Alloys and Compounds, 504S (2010), S410.
    [30] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon, Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy, Applied Physics Letters, 89 (2006), 121906.
    [31] L.H. Xu, P. Dixit, J.M. Miao, H.L. Pang, X. Zhang, K.N. Tu, and R. Preisser, Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins, Applied Physics Letters, 90 (2007), 033111.
    [32] P. Dixit, L.H. Xu, J.M. Miao, J.H.L. Pang, and R. Preisser, Mechanical and microstructural characterization of high aspect ratio through-wafer electroplated copper interconnects, Journal of Micromechanics and Microengineering, 17 (2007), 1749.
    [33] I. Dutta, C. Park, and J. Vella, Effect of internal stresses on thermo-mechanical stability of interconnect structures in microelectronic devices, Material Science Engineeting :A, 421 (2006), 118.
    [34] L.H. Xu, D. Xu, K.N. Tu, Y. Cai, N. Wang, P. Dixit, J.H.L. Pang, and J. Miao, Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper, Journal of Applied Physics, 104 (2008), 113717.
    [35] Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu, Tensile properties of copper with nano-scale twins, Scripta Materialia, 52 (2005), 989.
    [36] I. Shabib, and R.E. Miller, A molecular dynamics study of twin width, grain size and temperature effects on the toughness of 2D-columnar nanotwinned copper, Modelling and Simulation in Materials Science and Engineering, 17 (2009), 055009.
    [37] D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K.N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition, Applied Physics Letters, 91 (2007), 254105.
    [38] J. Chen, W. Yan, X.Y. Wang, and X.H. Fan, Microstructure evolution of single crystal copper wires in cold drawing, Science in China Series E: Technological Sciences, 50 (2007), 736.
    [39] T. Baudin, A.L. Etter, and R. Penelle, Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements, Materials Characterization, 58 (2007), 947.
    [40] S. Jakani, T. Baudin, C.H. de Novion, and M.H. Mathon, Effect of impurities on the recrystallization texture in commercially pure copper-ETP wires, Materials Science and Engineering A, 456 (2007), 261.
    [41] J.H. Cho, A.D. Rollett, J.S. Cho, Y.J. Park, J.T. Moon, and K.H. Oh, Investigation of recrystallization and grain growth of copper and gold bonding wires, Metallurgical and Materials Transactions A, 37A (2006), 3085.
    [42] K.K. Mirpuri, H. Wendrock, K. Wetzig, and J. Szpunar, Behavior of (111) grains during the thermal treatment of copper film studied in situ by electron back-scatter diffraction, Microelectronic Engineering, 83 (2006), 221.
    [43] K. Mirpuri, H. Wendrock, S. Menzel, K. Wetzig, and J. Szpunar, Texture evolution in Copper film at high temperature studied in situ by electron back-scatter diffraction, Thin Solid Films, 496 (2006), 703.
    [44] K.J. Mirpuri, and J.A. Szpunar, Influence of substrate on high-temperature behavior of copper film studied in situ by electron backscatter diffraction, Journal of Electronic Materials, 34 (2005), 1509.
    [45] K. Mirpuri, and J. Szpunar, Impact of annealing, surface/strain energy and linewidth to line spacing ratio on texture evolution in damascene Cu interconnects, Materials Characterization, 54 (2005), 107.
    [46] G.T. Lui, D. Chen, and J.C. Kuo, EBSD characterization of twinned copper using pulsed electrodeposition, Journal of Physics D: Applied Physics, 42 (2009), 215410.
    [47] A. Damjanovic, On the mechanism of metal electrocrystallization, Plating, 52 (1965), 1017.
    [48] L. Krushev, V. Pangarova, and N. Pangarov, The effect of crystal orientation on the strength of copper deposited at high current densities, Plating, 55 (1968), 841.
    [49] N.A. Pangarov, Preferred orientations in electro-deposited metals, Journal of Electroanalysis Chemistry, 9 (1965), 70.
    [50] B. Hong, C.H. Jiang, and X.J. Wang, Influence of complexing agents on texture formation of electrodeposited copper, Surface Coating Technology, 201 (2007), 7449.
    [51] 張宇倫,反應式共濺鍍製程參數對氮化鉭細薄膜電阻溫度係數之影響及其應用研究,國立成功大學碩士論文,2007。
    [52] 國立成功大學微奈米中心,MTS-Nano-indenter-XP 使用手冊,(2005)。
    [53] W.C. Oliver, and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research Society, 7 (1992), 1564.
    [54] 鄭信民,林麗娟,X光繞射應用簡介,工業材料雜誌,181期 (2002),100。
    [55] 陳志慶,奈米鋁材料塑性行為之探討,國立成功大學碩士論文,2006。
    [56] OIM Analysis 5.1之說明檔, Copyright 1997-2006, TSL.
    [57] 湯凱文,脈衝電鍍銅的橫截面微結構及其特性,國立成功大學碩士論文,2009。
    [58] S.P. Lee, C.M. Ho, T.F. Yeh, C.P. Chang, and J.N. Chang, Conducting polymer as chemical warfare agents sensors, Journal of C.C.I.T., 35 (2006), 1.
    [59] W.D. Callister, Materials science and engineering, John Wiley & Sons, 2005.
    [60] P. Sonnweber-Ribic, P. Gruber, G. Dehm, and E. Arzt, Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction, Acta Materialia, 54 (2006), 3863.
    [61] R.T.C. Choo, J.M. Toguri, A.M. El-Sherik, and U. Erb, Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating, Journal of Applied Electrochemistry, 25 (1995), 384.
    [62] S. Glasstone, Electrode potentials and the form of electrodeposited metals, Transactions of the Faraday Society, 31 (1935), 1232.
    [63] M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons, 1998.
    [64] W.C. Tsai, C.C. Wan, and Y.Y. Wang, Mechanism of copper electrodeposition by pulse current and its relation to current efficiency, Journal of Applied Electrochemisty, 32 (2002), 1371.
    [65] B. Rivolta, L. P. Bicelli, G. Razzini, Structural aspects of the growth of nickel electrodeposits from sulphamate baths on oriented single-crystal surfaces of austenitic stainless steel, Journal of Physics D: Applied Physics, 8 (1975), 2025.
    [66] L.H. Qian, Q.H. Lu, W.J. Kong, and K. Lu, Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu, Scripta Materialia, 50 (2004), 1407.
    [67] Y.K. Huang, A.A. Menovsky, and F.R. de Boer, Electrical resistivity of nanocrystalline copper, Nanostructured Materials., 2(1993), 505.
    [68] M. Fenn, G. Akuetey, and P.E. Donovan, Electrical resistivity of Cu and Nb thin films,Journal of Physics: Condensed Matter, 10 (1998),1707.
    [69] E. Botcharova, J. Freudenberger, and L. Schultz, Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys, Acta Materialia, 54 (2006), 3333
    [70] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile properties of in situ consolidated nanocrystalline Cu, Acta Materialia, 53 (2005), 1521.
    [71] P.G. Sanders, J.A. Eastman, and J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Materialia, 45 (1997), 4019

    下載圖示 校內:2016-08-16公開
    校外:2016-08-16公開
    QR CODE