| 研究生: |
林暐儒 Lin, Wei-Ju |
|---|---|
| 論文名稱: |
直流電漿設備中集體帶電粒子行為的實驗研究 Experimental studies on collective charged particle behavior in DC plasma equipment |
| 指導教授: |
西村泰太郎
Yasutaro, Nishimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 直流電漿產生裝置 、多極磁場 、朗繆爾探針 、廊道阻尼 、電漿波回聲 |
| 外文關鍵詞: | DC plasma generator, multi-pole magnetic field, Langmuir probe, Landau damping, plasma wave echo |
| 相關次數: | 點閱:105 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直流電漿產生器一直是研究基本電漿性能便宜且方便的良好實驗對象。 本論文設計了一種直流電將設備系統。 選擇氬氣作為電漿源,並使用油壓式真空幫浦輔助擴散式泵浦來達到高真空。 在產生電漿時,直流放電被用來從金屬絲表面引發熱電子發射,然後引起電子雪崩。 為了增加電漿密度,使用了上千個永久磁鐵來形成多極磁場,該多極磁場可防止電子和離子直接與真空室的壁(不銹鋼)碰撞。 通過自製的電路放大器和Langmuir探針測量電漿密度和電子溫度。 信號發生器會激發離子聲波,為測量Landau阻尼和等離子波回波做準備。
DC plasma generators have always been inexpensive, but convenient experimental apparatus to investigate basic plasma properties. This thesis designs a system of a DC plasma device. The plasma source was selected as argon gas, and an oil rotary vacuum pump assisted by a diffusion pump is used to achieve a high vacuum. In generating plasmas, the DC discharge is employed to induce thermionic emission from the metal filament’s surface which then causes the avalanche of electrons. In order to increase plasma density, a thousand permanent magnets are employed to form a multi-pole magnetic field, which prevents electrons and ions getting lost to the wall (stainless steel) of the vacuum chamber directly. The plasma density and electron temperature are measured by a self-made circuit amplifier and a Langmuir probe. Ion-acoustic waves are excited by the signal generator to prepare for the experimental studies of ion acoustic wave (IAW) Landau damping and plasma waves echo.
1. R. Limpaecher and K.R. Mackenzie, "Magnetic Multipole Containment of Large Uniform Collisionless Quiescent Plasmas", Rev. Sci. Instrum. 44, 726 (1973).
2. L.Landau, "On the vibration of the electronic plasma", JETP 16, 574 (1946).
3. D. R. Baker, N. R. Ahern, and A. Y. Wong, "Ion-Wave Echoes", Phys. Rev. Lett. 20, 318 (1968).
4. B. Z. Wu, M.S. Thesis, "Investigation of Coulomb collisional effects on plasma wave echo by using particle-in-cell simulation", (National Cheng Kung University, Tainan, 2018).
5. D. R. Nicholson, "Introduction to plasma theory", Krieger (1992), pp.41-43, pp.70-83.
6. Francis F. Chen "Introduction to plasma physics and controlled fusion", pp.217-218, p.275.
7. J. Reece. Roth, Institute of Physics Publishing Bristol and Philadelphia "Industrial Plasma Engineering Volume 1: Principles", (1995), Chap. 5.1.2.
8. H. Hutchinson, "Principles of Plasma Diagnostics", (2002), pp.44-73.
9. Bernhard Wolf. Handbook of ion sources. CRC Press, 1995, p.11, p.27.
10. C. J. Smithells, Metals Reference Book, Vol III, Butterworths, London, 1967, Chap. 18-1, Chap. 18-2.
11. Nicholas A. Krall, Alvin W. Trivelpiece "Principle of plasma physis", (1932), pp.371-392
12. By the contesy of Drs. K. Oyama and T. Liu for Langmuir probe amplifier’s circuit design.
13. Michael A. Lieberman and Allan J. Lichtenberg “Principles of plasma discharges and materials processing”, (1994), pp. 58-62.
14. G. Chiodini, C. Riccardi and M. Fontanesi, “A 400 kHz, fast-sweep Langmuir probe for measuring plasma fluctuations”, Rev. Sci. Instrum. 70, 2681 (1999).
15. Y. Nakamura, T. Odagiri, and I. Tsukabayashi, “Ion-acoustic waves in a multicomponent plasma with negative ions”, Plasma Phys. Control. Fusion 39, 105 (1997).
16. A. Y. Wong, R. W. Motley, and N. D'Angelo, “Landau Damping of Ion Acoustic Waves in Highly Ionized Plasmas”, Phys. Rev. 133, A436 (1964).
17. K.-I. Oyama, private communication (2021).