| 研究生: |
何溫庭 He, Wen-Ting |
|---|---|
| 論文名稱: |
低展弦比突節翼形流場結構與性能之研究 On the Structure and Performance of Low Aspect Ratio Foil with Tubercle |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 導緣突節 、流場可視化 、NACA0012 、低展弦比 、壁效應 |
| 外文關鍵詞: | leading-edge tubercles, flow performance, flow visualization, NACA0012, low aspect ratio, wall effect |
| 相關次數: | 點閱:211 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以實驗方法探討導緣突節外型對翼形表面流場結構及性能之影響,在過去的研究中對於導緣突節設計之特性主要分成兩部分討論:三維鰭狀肢及二維矩形翼,不過大部分都是在探討翼型性能的改善及變化,對於導緣突節如何改變流場結構進而使性能提升並沒有完全的瞭解,故本研究以NACA0012做為實驗之翼型,設計三種不同振幅之導緣突節,於空蝕水槽中進行翼型性能實驗,再藉由PTV及油墨可視化之方法,探討突節設計對於流場結構及性能的變化,並額外考量一側靠wall之影響。
根據性能實驗結果顯示,升力係數明顯下降,阻力卻有顯著的改善,尤其是振幅最大的NACA0012L,對於性能提升效果為最佳。比較無突節翼型與突節翼型之可視化結果發現突節波谷產生的渦流雖然減少了表面的附著流,使整體升力下降,但卻能延緩邊界層分離的發生,使阻力獲得改善,並保持升力使失速攻角延後,且這個渦流能在後失速區吸引部分已經分離的流場重新附著回表面,這個特性能使後失速區的升力獲得改善。
In this study, experiments were conducted to investigate the effects of leading -edge tubercles on the flow structure and performance of foil surfaces. Previous studies have discussed the 3D flipper and 2D rectangular foil designs of leading-edge tubercles. However, most of them have focused on the improvement of foil performance, and not on how leading-edge tubercles alter flow structures to enhance airfoil performance. Therefore, this study adopted the NACA0012 to design three types of leading-edge tubercles with distinct amplitudes. The developed tubercles were tested in a cavitation tank to assess the performance of the foil. Subsequently, particle tracking velocimetry and ink visualization methods were used to investigate the changes in the flow structure and performance of foils with the designed tubercles, as well as the effects of a side wall on the tubercles.
According to the performance test results, the foil lift coefficient decreased substantially, and the drag improved significantly. Specifically, the performance of the NACA0012L with the largest amplitude improved considerably. A comparison of the visualization results of the foils with and without tubercles revealed that the vortex generated in the tubercle trough reduced the surface-attached flow, thereby decreasing the lift force. However, the vortex could delay the separation of the boundary layer, increasing the drag and maintaining the lift force at a level that influences the stalling angle of attack. Moreover, it could attract a portion of the separated flow in the post-stall region and reattach it to the surface. These characteristics can improve the lift force in the post-stall region.
Alin, N.; Bensow, R. E.; Fureby, C.; Huuva, T.; ; Svennberg, U. (2010). Current capabilities of DES and LES for submarines at straight course. Journal of Ship Research, 54(3), 184-196.
Benyus, J. M. (1997). Biomimicry: Innovation Inspired by Nature. New York: William Morrow.
Bushnell, D. M.; Moore, K. J. (1991). Drag reduction in nature. Annual Review of Fluid Mechanics, 23(1), 65-79
Bolzon, M. D.; Kelso, R. M.; and Arjomandi, M. (2015). Tubercles and Their Applications. Journal of Aerospace Engineering.
Choi, H.; Park, H.; Sagong, W.; and Lee, S. I. (2012) Biomimetic flow control based on morphological features of living creatures, Physics of Fluids 24(12).
Coleman, H. W.; Steele, W. G. (1989). Experimentation and uncertainty analysis for engineers. John Wiley & Sons. New York.
Custodio, D. (2007). The effect of humpback whale-like leading edge protuberances on hydrofoil performance, Diss. Worcester Polytechnic Institute.
Custodio, D.; Henoch, C. W.; and Johari, H. (2015). Aerodynamic Characteristics of Finite Span Wings with Leading-Edge Protuberances. AIAA Journal, 53(7), 1-16.
Fish, F. E.; Battle, J. M. (1995). Hydrodynamic design of the humpback whale flipper. Journal of Morphology, 225(1), 51-60.
Fish, F. E.; Weber, P. W.; Murray, M. M.; and Howle, L. E. (2011). Marine applications of the biomimetic Humpback whale flipper. Marine Technology Society Journal, 45(4), 198-207.
Greitzer, E. M.; Tan, C. S.; and Graf, M. B. (2004). Internal flow: concepts and applications (Vol. 3). Cambridge University Press.
Hansen, K. L.; Kelso, R. M.; and Dally, B. B. (2011). Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA journal, 49(1), 185-194.
Hasheminejad, S. M.; Mitsudharmadi, H.; and Winoto, S. H. (2014). Effect of Flat Plate Leading Edge Pattern on Structure of Streamwise Vortices Generated in Its Boundary Layer. Journal of Flow Control, Measurement & Visualization, 2014.
Johari, H.; Henoch, C. W.; Custodio, D.; and Levshin, A. (2007). Effects of leading-edge protuberances on airfoil performance. AIAA journal, 45(11), 2634-2642.
Lowry, J. G.; Polhamus, E. G. (1957). A method for predicting lift increments due to flap deflection at low angles of attack in incompressible flow. National Advisory Committee for Aeronautics.
Miklosovic, D. S.; Murray, M. M.; Howle, L. E.; and Fish, F. E. (2004). Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids (1994-present), 16(5), L39-L42.
Miklosovic, D. S.; Murray, M. M.; and Howle, L. E. (2007). Experimental evaluation of sinusoidal leading edges. Journal of aircraft, 44(4), 1404-1408.
Naitoh, T.; Allen, J. (2005, November). Instability of a junction vortex. In APS Division of Fluid Dynamics Meeting Abstracts (Vol. 1).
Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; and Dally, B. B. (2014). The formation mechanism and impact of stream-wise vortices on NACA 0021 airfoil's performance with undulating leading edge modification. Physics of Fluids, 26(10).
van Nierop, E. A.; Alben, S.; and Brenner, M. P. (2008). How bumps on whale flippers delay stall: an aerodynamic model. Physical review letters, 100(5).
Watts, P.; Fish, F. E. (2001, August). The influence of passive, leading edge tubercles on wing performance. In Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol. Durham New Hampshire: Auton. Undersea Syst. Inst.
Weber, P. W., Howle, L. E., & Murray, M. M. (2010). Lift, drag, and cavitation onset on rudders with leading-edge tubercles. Marine technology, 47(1), 27-36.
Weber, P. W.; Howle, L. E.; Murray, M. M.; and Miklosovic, D. S. (2011). Computational evaluation of the performance of lifting surfaces with leading-edge protuberances. Journal of Aircraft, 48(2), 591-600.
Zhang, M. M.; Wang, G. F.; Xu, J. Z. (2014). Experimental study of flow separation control on a low-Re airfoil using leading-edge protuberance method. Experiments in Fluids, 55(4), 1-13.
William Wang. (2005). On the design and improvement of watertight six component balancer. National Taiwan Ocean University: Department of Systems Engineering and Naval Architecture. 王威仁(2005),水密型六分力計之設計與改良,國立台灣海洋大學系統暨造船學系碩博士班碩士論文。
Yu-Po Wang. (2014). Research on the Characteristics of Masker System Bubbles near Side Hulls. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 王昱博(2014),船側減噪氣泡覆蓋行為之研究,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Chien-ho Lin. (2009). Preliminary Study on the Effect of Leading Edge Protuberances on B-Series Propeller’s Performance. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 林建和(2009),導緣突節對B系列螺槳之性能影響之初步研究,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Sheng-Chieh Shih. (2010). The Application of LDV on the Stern Tunnel Flow Field Measurement in a Towing Tank. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 施勝傑(2010),應用都卜勒測速儀於拖航水槽艉隧道流場量測,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Che-Kai Hsu. (2008). Application of Particle Tracking Velocimetry to the Measurement of the Velocity of Underwater Particles. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 許哲愷(2008),應用質點軌跡測速儀於測量水下顆粒速度之研究,國立成功大學系統及船舶機電工程學系碩博士班碩士論文年。
Yung-Shiun Juang. (2014). An Experimental Study on the Flow Field Structure of Low Aspect Ratio Foils with Leading Edge Tubercle. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 莊詠勛(2014),以實驗方法探討低展弦具導緣突節翼形之流場結構特性,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Shi-Shiang Li. (2010). The Effect of Aspect Ratio on the Performance of Airfoil with Protuberances on Leading Edges. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 黎世翔(2010),展弦比對具導緣突節翼形性能之影響,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Yi-Chung Liu. (2012). Investigation on Low-Reynolds Number Aerodynamic Characteristics of Low-Aspect Ratio Thin Wings. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 劉益仲(2012),低雷諾數效應下低展弦比薄翼之空氣動力特性研究,國立成功大學航空空太工程學系碩博士班博士論文。