| 研究生: |
曾國杭 Tseng, Kuo-Hang |
|---|---|
| 論文名稱: |
應用機器學習於半導體製造業物料需求計畫之個案研究 A Case Study on the Application of Machine Learning in Material Requirements Planning for the Semiconductor Manufacturing Industry |
| 指導教授: |
呂執中
Lyu, JrJung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 需求預測 、機器學習 、強化學習 、馬可夫決策過程 |
| 外文關鍵詞: | Demand Forecasting, Machine Learning, Reinforcement Learning, Markov Decision Process |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140–1154.
2. Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1889.
3. Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson. ISBN-13: 978-0133800203
4. Christopher, M., & Peck, H. (2004). Building the resilient supply chain. The International Journal of Logistics Management, 15(2), 1–14.
5. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support Vector Regression Machines. Advances in Neural Information Processing Systems, 9, 155–161.
6. Gao, Y., & Wang, C. (2024). Research on Supply Chain Optimization and Management Based on Deep Reinforcement Learning. ResearchGate.
7. Giannoccaro, I., & Pontrandolfo, P. (2002). Inventory management in supply chains: A reinforcement learning approach. International Journal of Production Economics, 78(2), 153–161.
8. Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427.
9. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts. ISBN-13: 978-0987507136
10. Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.
11. LeCun, Y., Bengio, Y., & Hinton, G. (2015).Deep learning. Nature, 521(7553), 436–444.
12. Lee, H. L., & Billington, C. (1995). The evolution of supply-chain-management models and practice at Hewlett-Packard. Interfaces, 25(5), 42–63.
13. Lee, Y.-H., & Lee, S. (2022). Deep reinforcement learning based scheduling within production plan in semiconductor fabrication. Expert Systems with Applications, 191, 116222.
14. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889.
15. Mentzer, J. T., & Moon, M. A. (2004). Sales Forecasting Management: A Demand Management Approach. SAGE Publications. ISBN-13: 978-1412905718
16. Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236
17. Orlicky, J. (1975). Material requirements planning: The new way of life in production and inventory management. McGraw-Hill. ISBN-10: 0070477086
18. Oroojlooyjadid, A., Nazari, M., Snyder, L., & Takáč, M. (2017). A Deep Q-Network for the Beer Game: A Deep Reinforcement Learning algorithm to Solve Inventory Optimization Problems. arXiv preprint arXiv:1708.05924.
19. Pai, P.-F., & Lin, C.-S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33(6), 497–505.
20. Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. John Wiley & Sons. ISBN-10: 0471619779
21. SEMI. (2023). Materials Market Data Report 2023. SEMI Industry Research & Statistics.
22. Sheffi, Y., & Rice Jr., J. B. (2005). A supply chain view of the resilient enterprise. MIT Sloan Management Review, 47(1), 41–48.
23. Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2008). Designing and managing the supply chain: Concepts, strategies, and case studies (3rd ed.). McGraw-Hill Education. ISBN-13: 978-0073403366
24. Stranieri, F., & Stella, F. (2022). Comparing deep reinforcement learning algorithms in two-echelon supply chains. arXiv preprint arXiv:2204.09603
25. Sutton, R. S., & Barto, A. G. (2018).Reinforcement learning: An introduction (2nd ed.). MIT Press. ISBN-13: 978-0262039246
26. Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics, 9(1), 33–45.
27. Tian, R., & Wang, H. (2023). IACPPO: A deep reinforcement learning-based model for warehouse inventory replenishment. SSRN Electronic Journal.
28. Trkman, P., & McCormack, K. (2009). Supply chain risk in turbulent environments—A conceptual model for managing supply chain network risk. International Journal of Production Economics, 119(2), 247–258.
29. Vollmann, T. E., Berry, W. L., Whybark, D. C., & Jacobs, F. R. (2005). Manufacturing Planning and Control for Supply Chain Management. McGraw-Hill. ISBN-10: 0071750312
30. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84.
31. Zhang, G. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175.
32. Zhao, X., Xie, J., & Zhang, W. J. (2002). The impact of information sharing and forecasting on supply chain performance. International Journal of Production Economics, 71(2), 315–328.
校內:2030-08-19公開