| 研究生: |
巴布 Baboo, Dhanabalan |
|---|---|
| 論文名稱: |
模擬人類運動之人型機器之設計與發展 Design and Development of Humanoid Robot for Human motion Retargeting |
| 指導教授: |
蔡明俊
Tsai, Ming-June |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 人形機器人 、運動捕捉 、運動重定向 |
| 外文關鍵詞: | Humanoid robot, Motion Capture, Motion Retargeting |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
機器複製人體運動的概念,近年來在機器人學領域中蓬勃發展。一般而言,工業用途的機器在市場上發展速度較為穩定,因此機器的設計與維修較為容易;然而,人形機器的發展是不受限制的。人形機器人的運動產生方法有許多種,其中一種方式為運動複製,將人類的運動模式捕捉與分析以複寫於人形機器中。此方法,能使機器人執行特定的行為,特別是能幫助人類在醫療或危險工作方面的協助。因此,此研究主要設計用以分析捕捉人類運動行為的軟體,且設計具有25個自由度的硬體設備。此人形機器長為430毫米,重1800公克,發展使用者介面用軟體以操縱該人型機器。而本研究將發展動態運動虛擬模型,以3D以圖形方式呈現的分析整合軟體,模擬人類的運動行為。並討論如何將人體運動重定向於人型機器人所面臨的問題與解決方法。
The idea of Human motion replication to robots is a booming research field in robotics. In general, the moments of commercial Industrial robots in the market are limited with a constant acceleration so they are easy to program and maintained but when it comes to the humanoid robot it is completely a different level where the moments of the robot are not limited and the acceleration is not constant. For humanoid robots, there are different methods to actuate them, one of the method is replicate the human motion captured this process is known as motion retargeting. Motion replication has mostly helped the robot to perform a particular task where more touch of a human is required for example in medical fields. This thesis is mainly focused on designing a humanoid robot for retargeting human motions using the motion-capturing software. The hardware of the humanoid robot is design with 25 degrees of freedom. For the purpose of simplicity the robot built in smaller scale. The height of the robot is 430 millimeters tall and weight 1800 grams. A user interface can retarget human motion and control the robot used as controlling software. The dynamic and kinematic virtual model is created and used for simulation in a graphical User interface of a motion retargeting software. The methods to control the robot after motion retargeting and the problem faced on motion retargeting also discussed.
1. Hirose, R. and Takenaka, T., Development of the humanoid robot ASIMO, Honda R&D Technical Review, vol. 13, pp. 1-6
2. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K. The intelligent ASIMO: System overview and integration, in IEEE/RSJ International Conference on Intelligent Robot and System. 2002, vol. 3, pp. 2478-2483.
3. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M. and Inoue, H. Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows the desired zmp, in IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, vol. 3, pp. 2684-2689.
4. Ahn, C. K., Lee, M. C. and Go, S. J. Development of a biped robot with toes to improve gait pattern, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2003, vol. 2, pp. 729-734.
5. Huang, Q., et al., Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, vol. 17, pp. 280-289.
6. Kajita, S., et al. Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics and Automation. 2003, vol. 2, pp. 1620-1626.
7. Cao, M. and Kawamura, A. A design method of neural oscillatory networks for generation of humanoid biped walking patterns, in IEEE International Conference on Robotics and Automation. 1998, vol. 3, pp. 2357-2362.
8. Cao, M., and Kawamura, A. An evolutionary design scheme of the neural oscillatory network for generation of biped walking patterns, in 5th International Workshop on Advanced Motion Control. 1998, vol., pp. 666-671.
9. Jalics, L., Hemami, H. and Zheng, Y. F. Pattern generation using coupled oscillators for robotic and biorobotic adaptive periodic movement, in IEEE International Conference on Robotics and Automation. 1997, vol. 1, pp. 179-184.
10. Hoonsuwan, P., Sillapaphiromsuk, S., Sukvichai, K. and Fish, A. Designing a stable humanoid robot trajectory using a real human motion, in 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. 2009, vol. 1, pp. 336-339.
11. Yang, J., Huang, Q., Peng, Z., Zhang, L., Shi, Y. and Zhao, X. Capturing and analyzing of human motion for designing humanoid motion, in IEEE International Conference on Information Acquisition. 2005, vol., pp. 332-337.
12. Suleiman, W., Yoshida, E., Kanehiro, F., Laumond, J. P. and Monin, A. On human motion imitation by humanoid robot, in IEEE International Conference on Robotics and Automation. 2008, vol., pp. 2697-2704.
13. Pollard, N. S. and Hodgins, J. K. Optimizing Human Motion for the Control of a Humanoid Robot, in Applied Mathematics and Applications of Mathematics. 2002, vol.
14. Pollard, N. S., Hodgins, J. K., Riley, M. J. and Atkeson, C. G. Adapting human motion for the control of a humanoid robot, in ICRA '02. IEEE International Conference on Robotics and Automation. 2002, vol. 2, pp. 1390-1397.
15. Dasgupta, A. and Nakamura, Y. Making feasible walking motion of humanoid robots from human motion capture data, in IEEE International Conference on Robotics and Automation. 1999, vol. 2, pp. 1044-1049.
16. Chulhee Yun, Jaegon Ahn and Yeon-Ho Kim, An Implementation of Computer Vision Technique for an Edutainment Robot with a Visual Programming Language in Nov 2, 2013.
17. Wan-Shan Yin, “Foot Reaction Analysis of Whole Body Dynamic via Screw Theory”, in 2014.
18. Tzu-Wei Yang, " A Research on the Motion Editing System for General Humanoid Robots " in 2011.
19. Microsoft Robotics, http://www.microsoft.com/robotics/#Learn.
20. MIT leg Lab., http://www.ai.mit.edu/projects/leglab/.
21. Takanishi Lab., http://www.takanishi.mech.waseda.ac.jp/.
22. Ahn, C. K., Lee, M. C. and Go, S. J. Development of a biped robot with toes to improve gait pattern, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2003, vol. 2, pp. 729-734.
23. Hirose, R. and Takenaka, T., Development of the humanoid robot ASIMO, Honda R&D Technical Review, vol. 13, pp. 1-6.
24. Hoonsuwan, P., Sillapaphiromsuk, S., Sukvichai, K. and Fish, A. Designing a stable humanoid robot trajectory using a real human motion, in 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. 2009, vol. 1, pp. 336-339.
25. Jackson, J., Microsoft Robotics Studio: A Technical Introduction, Robotics & Automation Magazine, IEEE vol. 14, pp. 82-87 Dec. 2007.
26. Jalics, L., Hemami, H., and Zheng, Y. F. Pattern generation using coupled oscillators for robotic and biorobotic adaptive periodic movement, in IEEE International Conference on Robotics and Automation. 1997, vol. 1, pp. 179-184.
27. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M. and Inoue, H. Toe joints that enhance bipedally and full body motion of humanoid robots, in ICRA '02. IEEE International Conference on Robotics and Automation. 2002, vol. 3, pp. 3105-3110.
28. Okada, M., Shinohara, T., Gotoh, T., Ban, S. and Nakamura, Y. Humanoid robot mechanisms for responsive mobility, in 2nd International Symposiumon Adaptive Motion of Animals and Machines. 2003, vol.
29. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K. The intelligent ASIMO: System overview and integration, in IEEE/RSJ International Conference on Intelligent Robot and System. 2002, vol. 3, pp. 2478-2483.
30. Pollard, N. S., and Hodgins, J. K. Optimizing Human Motion for the Control of a Humanoid Robot, in Applied Mathematics and Applications of Mathematics. 2002, vol.
31. Shin, H. J., Kovar, L. and Gleicher, M. Physical touch-up of human motions, in IEEE Computer Society Proceedings of Pacific Graphics. 2003, vol. 194-203.
32. Suleiman, W., Yoshida, E., Kanehiro, F., Laumond, J. P. and Monin, A. On human motion imitation by a humanoid robot, in IEEE International Conference on Robotics and Automation. 2008, vol., pp. 2697-2704.
33. Yamaguchi, J., and Takanishi, A. Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism, in IEEE/RSJ International Conference on Intelligent Robots and Systems. 1997, vol. 1, pp. 251-259.
34. Yang, A. T. (1963), Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, Published Doctoral Dissertation, Columbia University.
35. Yang, J., Huang, Q., Peng, Z., Zhang, L., Shi, Y. and Zhao, X. Capturing and analyzing of human motion for designing humanoid motion, in IEEE International Conference on Information Acquisition. 2005, vol., pp. 332-337.