| 研究生: |
王惠民 Wang, Hui-Min |
|---|---|
| 論文名稱: |
以正十六烷回收 Acinetobacter radioresistens 脂肪酵素之研究 A reasearch of recovery Acinetobacter radioresistens lipase by n-hexadecane |
| 指導教授: |
陳特良
Chen, Teh-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 脂肪酵素 、正十六烷 |
| 外文關鍵詞: | n-hexadecane, lipase |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所採用的菌株Acinetobacter radioresistens為革蘭氏陰性桿菌,篩選自廢水汙泥之嗜鹼性脂肪酵素生產菌,是一野生菌,較不易釋放出細胞內部的物質;最適合的培養溫度為30℃,所生產的脂肪酵素分子量為38 kDa、等電點為4.5,此酵素在pH 7.0~10.0及溫度30℃以下的室溫中具有良好的穩定性;有清潔劑產品工業的應用價值。
本脂肪酵素會分佈在水相及油水界面,添加1.5% 乙二醇可促進油水界面上酵素之回收。硫酸銨沉澱劑是實驗中較佳的選擇,回收率可達90%。提高起始蛋白質濃度與添加Na+、K+、Ca2+及Mg2+,實驗可得更好的回收效果。
本文提出新的策略之一:以水-正十六烷之油水界面行疏水性吸附,自醱酵液中回收脂肪酵素。利用此界面吸附之特性,產生大量的水-正十六烷界面,脂肪酵素可扮演乳化劑的角色而吸附在界面上,形成可與水分開的乳化相。藉著離心,水和正十六烷的乳化相可輕易分開。在此回收程序中,正十六烷並未被消耗,可回收再使用。此吸附遵循Langmuir吸附平衡關係,能以模擬預測吸附量和酵素活性。連續式多階段重複操作,結果濃縮倍數有4.2倍,回收率達67%。添加10%硫酸銨能提升濃縮倍數到4.4,回收率至79.8%。
本文提出新的策略之二:表面吸附液相正十六烷的不織布,可當成一吸附劑,以回收脂肪酵素。此酵素吸附於液態正十六烷表面上的量比固態正十六烷強很多;正十六烷的熔點介於16-18℃之間,利用小幅溫度變化,於液態正十六烷做吸附,而在固態正十六烷做脫附。在批次操作由於平衡的限制,所以濃縮倍數較低,在管柱實驗則可增加吸附劑的量,以提高濃縮倍數。吸附與脫附行為亦遵循Langmuir吸附平衡關係,利用此式在批次與管柱研究中得到良好的預測值,成功描述了吸附與脫附現象。
本文提出新的策略之三:在兩相流動超過濾中,以正十六烷取代空氣,減少因溶質產生的濃度極化現象。利用正十六烷的黏滯係數比空氣高,於兩相流動時可產生更大剪應力。以正十六烷/液的超過濾方式,可提昇脂肪酵素的濾出液通量與回收率,且沒有酵素失活的問題。以另外的系統,牛血清蛋白和糊精檢測濾出液通量,結果在通正十六烷於超過濾系統中,促進果效與脂肪酵素類似,而且都比空氣佳。若使用肌酸酵素溶液,通正十六烷後的濾速與酵素回收率也有明顯提昇。
The strain used in this study was A. radioresistens, a Gram negative bacterium isolated from wastewater sludge. The lipase produced is extracellular and has a molecular weight of 38,000 (Ng, 1998). The optimum temperature and optimum pH of this enzyme are 37℃ and 10.0, respectively. The lipase produced was found to distribute between the aqueous phase and the oil- water interface. The fraction of lipase in the aqueous phase could be increased to 85% if 1.5% (v/v) of ethylene glycol was added to the broth; nevertheless, further addition of ethylene glycol led to decreases in the lipase recovery For A. radioresistens lipase, the enzyme stabilizer could be Na+, K+, Ca+2 or Mg+2 at a concentration of 10 mM.
A. radioresistens lipase has a strong tendency to be adsorbed on the n-hexadecane-water interface. Taking advantage of this feature, we developed a recovery process by generating a lot of n-hexadecane-water interface in the enzyme solution. Lipase, acting as the emulsifier, could then be adsorbed at the interface, and form a separate emulsion phase. By centrifugation, the harvested emulsion phase again split into n-hexadecane and aqueous solution; thus concentrating the lipase. In this process, n-hexadecane was not consumed and could be reused. The adsorption process followed the Langmuir isotherm, and a multiple-run operation was recommended to enhance the enzyme recovery. The present process might be generally applicable to lipase recovery.
A. radioresistens lipase has a much higher affinity for liquid n-hexadecane than for solid n-hexadecane. Taking advantage of this feature, we immobilized n-hexadecane on a hydrophobic nonwoven fabric as the adsorbent to recover the lipase from fermentation broth. Above the melting point of n-hexadecane, we performed the adsorption, and below the melting point, the adsorbed lipase was then desorbed. There are no extraneous materials needed for desorption, the range of temperature shift can be quite small, and the enzyme will not denaturalize. The adsorption isotherm of lipase on the adsorbent follows the Langmuir model. Using the isotherm, we were able to simulate both batch and column adsorption/desorption processes. In batch process, the concentration factor is restrained by equilibrium; however, in column process, the concentration factor is proportional to the amount of adsorbent used.
n-Hexadecane has a much higher viscosity than air and hence can generate a much higher shear force in a two-phase flow process. Taking advantage of this feature, we mixed protein solutions with n-hexadecane in the operation of a crossflow ultrafiltration, and found that this was more effective in reducing concentration polarization than that with air sparging. For ultrafiltration of a crude lipase solution, both of permeate flux and activity recovery were significantly enhanced. In addition, there was no evidence of enzyme inactivation owing to the use of the two-phase flow. The n-hexadecane/water two-phase flow could have a general applicability in ultrafiltration practices.
Aires-Barros, M. R., and J. M. S. Cabral, “Selective separation and purification of two lipases from Chromobacterium viscosum using AOT reversed micelles,” Biotechnol. Bioeng., 38, 1302-1307 (1991).
Albertsson, P. A., “Partition of cell particles and macromolecules,” 3rd Ed., John Wiley & Sons, New York, 98, (1986).
Al-Duri, B., and Y. P. Yong, “Characterization of the Equilibrium Behavior of Lipase (from Pseudomonas) and Lipolase 100L (from Humicola) onto Accurel EP100,” J. Molecular Catalysis B: Enzymatic, 3, 177-188 (1997).
Antonian, E., “Recent advances in the purification, characterization and structure determination of lipases.” Lipids, 23, 1101-1106 (1998).
Andersson, R. E., “Concentration and partial purification of lipase from Pseudomonas Fluorescens,” Biotechnol. Lett., 5, 247-252 (1980).
Barkay, T., S. Navon-Venezia, E. Z. Ron, and E. Rosenberg, “Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the biomulsifier alasan,” Applied and Environmental Microbiology., 65, 3697-2702 (1999).
Blow, D., “Lipases reach the surface,” Nature, 35, 444-445 (1991).
Bollag, D. M., and S. J. Edelstein, “Protein Methods,” Wiley-Less, 95-135 (1991).
Bozoglu, Faruk, Harold E., Swaisgood, Daniel M., and Adams, Jr., “Isolation and characterization of an extracellular heat-stable lipase produced by pseudomonas flueorescens MC50,” J. Agric. Food Chem., 32, 2-6 (1984).
Bradfold, M. M., “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding,” Anal. Biochem., 72, 248-254 (1976).
Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, J. P. Turkenberg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim, U. Menge, and S. Tolley, “A serine protease triad forms the r, Ser-Hcatalytic centre of a triacylglycerol lipase,” Nature, 343, 767-770 (1990).
Brenner, S., “The molecular evolution of genes and proteins:a tale of two serines,” Nature, 334, 528-530 (1988).
Breuil, Colette and D. J. Kushner, “Partial purification and characterization of the lipase a facultatively psychrophilic bacterium (Acinetobacter O16)” Can. J. Micro. 21, 434-441 (1975).
Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Godson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A Patkar, L. Thim, “A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex,” Nature, 351, 491-494 (1991).
Cabassud, C., S. Laborie, and J. M. Lainé, “How slug flow can improve ultrafiltration flux in organic hollow fibers,” J. Membr. Sci., 128, 93-101 (1997).
Cabassud, C., S. Laborie, L. Durand-Bourlier, and J.M. Lainé, “Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters,” J. Membr. Sci., 181, 57-69 (2001).
Castro, H. F. de, P. C. de Oliveira, C. M. F. Soares, and G. M. Zanin, “Immobilization of porcine pancreatic lipase on celite for application in the synthesis of butyl butyrate in a nonaqueous system,” JAOCS, 76, 147-152 (1999).
Cheng, T. W., “Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane,” J. Membr. Sci., 178, 103-110 (2002).
Chen, M. I.; Wang, H. M.; Chen, C. Y.; Chen, T. L.; Wu, J. Y., “Recovery of Acinetobacter radioresistens lipase by hydrophobic adsorption on a nonwoven fabric,” J. Chin. Inst. Chem. Engrs., 31, 595-599 (2000).
Chen, S. J.; Cheng, C. Y.; Chen, T. L., “Production of an alkaline lipase by A. radioresistens,” J. Ferment. Bioeng., 86, 308-312 (1998).
Clark, K. M. and C. E. Glatz, “Plymer dosage considerations in polyelectrolyte precipitation of protein,” Biotech. Proc. 3, 241-247 (1987).
Clark, K. M. and C. E. Glatz, “A binding model for the precipitation of proteins by carboxymethyl cellulose,” Chem. Eng. Sci., 47, 215-224 (1992).
Crueger, W. and A. Crueger, “Biotechnology: a textbook of industrial microbiology,” Science Tech, Madison, WI, 177-178 (1984).
Cui, Z., and T. Taha, “Enhancement of ultrafiltration using gas sparging: a comparison of different membrane modules,” J. Chem. Technol. Biotechnol., 78, 249-253 (2003).
Cui, Z. F., and K. I. T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism,” J. Membr. Sci., 117, 109-116 (1996).
Cui, Z. F., and K. I. T. Wright, “Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions,” J. Membr. Sci., 90, 183-189 (1994).
Delgado, L. R. S., and S. Elmaleh, “Enhancing microfiltration through an inorganic tubular membrane by gas sparging,” J. Membr. Sci., 165, 47-57 (2000).
Dherbomez, M., J. L. Lacrampe, and J. Larouquere, “Contribution a l’etude de la lipase de Candida lipolytica,” Rev. Fr. Corps Gras, 22, 147 (1975).
Diogo, M. M., J. M. S. Cabral, J. A. Queiroz, “Preliminary study on hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polypropylene glycol immobilized on sepharose,” J. Chromatogr., 796, 177-180 (1998).
Duncan J. Shaw; “Introduction to colloid and surface chemistry;” Liverpool Polytechnic, (1991).
Dunhaupt, Armin, Siegmund Lang and Fritz Wagner, “Pseudomonas cepacia lipase: studies on aggregation, purification and on the cleavage of olive oil,” Biotech. Letters, 14, 953-958 (1992).
Elmaleh, S., L. Vera, R. Villarroel-López, L. Abdelmoimni, N. Ghaffor, and S. Delgado, “Dimensional analysis of steady state flux for microfiltration and ultrafiltration membranes,” J. Membr. Sci., 139, 37-45 (1998).
Fredrik, B., E. G. Sven, and K. Ole, “The future impact of industrial lipases.”, TIBTECH, 9, 360-363 (1991).
Frost, G. M. and D. A. Moss, “Production of enzymes by fermentation” Biotechnology, Rehm, H. J., Reed, G., Eds. VCH Publishers: New York, 7a, 113-121 (1987).
Fukumoto, J., Y. Tsujisaka, and M Iwai, “Preparation of a stable lipase composition and purification thereof,” U. S. Patent 3262863 (1966).
Gardner, J. C., and R. L. DiCicco, Spec. Chem., Jul/Aug, S9-S12 (1994) 少篇名
Gargouri, Y., Abderraouf Bensalah, Isabelle Douchet and Robert Verger, “Kinetic behavior of pancreatic lipase in five species using emulsions and monomolecular films of synthetic glycerides,” Biochimica et Biophysica Acta, 1257, 223-229 (1995).
Ghosh, R., Li, Q., and Z. Cui, “Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging,” AIChE J., 44, 61-67 (1998).
Glatz, C. E., “Precipitation,” in Bioprocess Technology Series Editor Separation Processes in Biotechnology (J. A. Asenjo Ed.), Marcel Dekker Inc., U.S.A., 9, 335 (1990).
Haas, Michael J., David J. Cichowicz, David G. Bailey, “Purification and characterization of an extracellular lipase from the fungus Rhizopus delemar,” Lipids 27, 571-576 (1992).
Harris, E. L. V., “Protein purification methods: a practical approach (E.L.V. Harris and S. Angal, Ed.),” IRL Press, Oxford, 151 (1989).
Heerden, van E., D. Litthauer, R. Verger, “Biochemical characterization and kinetic properties of a purified lipase from Aspergillus niger in bulk phase and monomolecular films,” Enz. Microb. Technol., 30, 902-909 (2002).
Houston, J. H., “Detergent enzyme’s market,” In van Ee, J. H., Misset, O., and Bass, E. J. (eds.), Enzymes in Detergency, Marcel Dekker, Inc. New York, 11-21 (1997).
Huang, H. M., F.Y. Lin, W. Y. Chen, and R.C. Ruaan, “Isothermal titration microcalorimetric studies of the effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents,” Journal of Colloid and Interface Science, 229, 600-606 (2000).
Huge-Jensen, B. and E. Gormsen, “Enzymatic detergent additives.” U.S. Patent, 4,810,414 (1989).
Iizumi, T., Koichi Nakamura and Tetsuro Fukase, “Purification and characterization of a thermostable lipase,” Agric. Biol. Chem., 54, 1253-1258 (1990).
Iizumi, T., K. Nakamura, T. Fukase, “Purification and characterization of a thermostable lipase from newly isolated Pseudomonas KWI-566,” Agric. Biol. Chem., 54, 1253-1258 (1990).
Ingham, K. C., “Protein precipitation with polyethylene glycol,” in Methods in Enzymology (W.B. Jakoby, Ed.), Academic Press, New York, 104, 351 (1984).
Isobe, M. and M. Sugiura, “Purification of microbial lipases by glass beads coated with hydrophobic materials,” Chem. Pharm. Bull., 25, 1987-1991 (1977).
Iwai, M., Y. Tsujisaka, Y. Okamoto, and J. Fukumoto, “Lipid requirement for the lipase production by Geotrichum candidum link,” Agric. Biol. Chem., 37, 929 (1973).
Jonsson, U., and B. G. Snygg, “Lipase production and activity as a function of incubation time, pH and temperature of four lipolytic micro organisms,” J. Appl. Bacteriol., 37, 571 (1974).
Kaufman, S., “Fractionation of protein mixtures with organic solvents,” Methods in Enzymology, (W.B. Jakoby, Ed.), Academic Press, New York, 22, 233 (1971).
Kojima, Y., M. Yokoe and T. Mase, “Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK102,” Biosci. Biotech. Biochem., 58, 1564-1568 (1994).
Koyama, Y., S. Kitao, H. Yamamoto-Otake, M. Suzuki, and E. Nakano, “Cloning and expression of the creatinase gene from Flavobacterium sp. U-188 in Escherichia coli,” Agri. Biol. Chem., 54, 1453-1457 (1990).
Krieger, N., M. A. Taipa, M. R. Aires-Barros, E. H. M. Melo, J. L. Lima-Filho, and J. M. S. Cabral, “Purification of the Penicillium citrinum lipase using AOT reversed micelles,” J. Chem. Tech. Biotechnol., 69, 77-85 (1997).
Ladisch, R. Michael, “Bioseparations engineering: principles, practice, and economics,” New York, (1994).
Lee, C. K., W. G. Chang, and Y. H. Ju, “Air slugs entrapped cross-flow filtration of bacterial suspensions,” Biotechnol. Bioeng., 41, 525-530 (1993).
Lee, S. Y., J. S. Rhee, “Production and partial purification of lipase from Pseudomonas putida3SK,” Enzyme Microb. Technol., 15, 617-623 (1993).
Lesuisse, Emmanuel, Karin Schlank, Charles Colson, “Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme” Eur. J. Biochem., 216, 155-160 (1993).
Li, C. Y.; Cheng, C. Y.; Chen, T. L., “Production of Acinetobacter radioresistens using tween 80 as the carbon source,” Enzyme Microb. Technol., 29, 258-263 (2001).
Lin, Shuen-Fuh, Jane-Chyi Lee, Chien-Ming Chiou, “Purification and characterization of a lipase from Neurospora sp. TT-241,” JAOCS, 73, (1996).
Lin, S. F., C. M. Chiou, C. M. Yeh, and Y. C. Tsai, “Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111,” Appl. Environ. Microbiol., 62, 1093-1095 (1996).
Lin, Y. C.; Wu, J. Y.; Chen, T. L., “Production of Acinetobacter radioresistens lipase with repeated batch culture in presence of nonwoven fabric,” Biotechnol. Bioeng., 76, 214-218 (2001).
Lowry, R. R., and I. J. Tinsley, “Rapid colorimetric deterination of free fatty acids,” JAOCS, 53,470-472 (1976).
L. Vera, “Dimensional analysis of steady state flux for microfiltration and ultrafiltration membranes,” Journal of Membrane Science, 139, 37-45 (1998).
L. Vera, “Dimensionless numbers for the steady-state flux of cross-flow microfiltration and ultrafiltration with gas sparging,” Chemical Engineering Science, 55, 3419-3428 (2000).
L. Vera, “Enhancing microfiltration through an inorganic tubular membrane by gas sparging,” Journal of Membrane Science, 165, 47-57 (2000).
Macrae, A. R., “Lipase-catalyzed interesterification of oils and fats,” J. Am. Oil. Chem. Soc., 60, 291-294 (1981).
Mahadevan, H., and C. K. Hall, “A statistical-mechanical model of protein precipitation by nonionic polymer,” AIChE J., 36, 1517 (1990).
Malcata, F. X., H. S. Garcia, C. G.. Hill Jr., C. H.Amundson, “Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: part I. lipase adsorption studies,” Biotechnol. Bioeng., 39, 647-657 (1992).
Markweg-Hanke, Manuela, Siegmund Lang and Fritz Wagner, “Dodecanoic acid inhibition of a lipase from Acinetobacter sp.OPA 55,” (1995).
Martinelle, M. and Hult, K. “Kinetics of triglyceride lipases,” p. 159-180. In Woolley, P., and Petersen, S. B. (eds.), Lipases, Cambridge University Press, Cambridge, UK (1994).
Matsumae, H., and T. Shibatani, “Purification and characterization of the lipase from Serratia marcescens Sr41 8000 responsible for asymmetric hydrolysis of 3-phenylglycidic acid esters,” J. Ferment. Bioeng., 77, 152-158 (1994).
McCabe Smith Harriott, “Unit operations of chemical engineering,” 6th edition, (1993).
Meito Sangyo Co. Ltd., “Manufacture of lipase,” Jap. Patent Appl. 58, 51889, Chem. Abstr., 99, 4086 (1983).
Melander, W., and C. Horvath, “Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series,” Arch. Biochem. Biophys., 183, 200 (1977).
Menart, V., V. Gaberc-Porekar, V. Harb, “Metal-affinity separation of model proteins having differently spaced clusters of Histidine residues,” In D. L. Pyle., Ed., Separations for Biotechnology 3, CI, Great Britain, 308-311 (1994).
Mercier, M., C. Fonade, and C. Lafforgue-Delorme, “Influence of the flow regime on the efficiency of a gas-liquid two-phase medium filtration,” Biotechnol. Tech., 9, 853-858 (1995).
Mercier, M., C. Fonade, and C. Lafforgue-Delorme, “How slug flow can enhance the ultrafiltration flux in mineral tubular membranes,” J. Membr. Sci., 128, 103-113 (1997).
Miled, Nabil, Alain De Caro, Josiane De Caro and Robert Verger, “A conformational transition between an open and closed form of human pancreatic lipase revealed by a monoclonal antibody” Biochimica et Biophsyica Acta, 1476, 165-172 (2000).
Milton J. Rosen, “Surfactants and interfacial phenomena,” New York, (1988).
Misset, O., and Bass, E. J. (eds.), “Development of new lipase,”New York, 107-131 (1997).
Mukherjee, K. D. and M. J. Hills, “ Lipases from plants,” In Woolley, P., and Petersen, S. B. (eds.), Lipases, Cambridge University Press, Cambridge, UK 49-75. (1994).
Navon-venezia, S., Z. Zosim., A.Gottlieb, R.Legmann, S.Carmeli, E.Z.Ron, and E.Rosenberg, “Alasan, a new bioemulsifier from acinetobacter radioresistens”Applied and environmental microbiology, 9, 3240-3244 (1995).
Navon-Venezia S., E. Banin E. Z. Ron E. Rosenberg, “The bioemulsifier alasan: role of protein in maintaining structure and activity,” Appl Microbiol Biotechnol., 49, 382-384 (1998).
Nishio, T., T. Chikano, and M. Kamimura, “ Purification and some properties of lipase produced by Pseudomonas fragi 22.39B, “ Agric. Biol. Chem., 51, 181-186 (1987).
Nossal, N. G. and L. A. Heppel, “The release of enzymes by osmotic shock from Escherichia coli in exponential phase,” J. Biol. Chem., 241, 3055-3062 (1966).
Pabai, F., S. Kermasha, A. Morin,“Lipase from Pseudomonas fragi CRDA 323: Partial purification, characterization and interesterification of butter fat,” Applied Microbiol Biotechnology, 43, 42-51 (1995).
Pal, N., S. Das, and A. K. Kundu, “Influence of culture and nutritional conditions on the production of lipase by submerged culture of Aspergillus niger,” J. Ferment. Technol., 56, 593 (1978).
Palekar, A., A. Vasudevan, P. T. Yan, “S. Purification of lipase: a review,” Biocat. Biotransf., 18, 177-200 (2000).
Petersen, S. B. and Drabløs, F., “A sequence analysis of lipases, esterases and related proteins,” In Woolley, P., and Petersen, S. B. (eds.), Lipases, Cambridge University Press, Cambridge, UK 23-48 (1994).
Piéroni, G.., Y. Gargouri, L. Sarda, and R. Verger, “Interactions of lipases with lipid monolayers: facts and questions,” Adv Colloid Interface Sci., 32, 341-378 (1990).
Przybycien, T. M., and J. E. Bailey, “Aggregation kinetics in salt-induced protein precipitation,” AIChE J., 35, 1779 (1989).
Queiroz, J. A., F. A. P. Garcia, J. M. S. Cabral, “ Hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polyethylene glycol immobilized on sepharose,” J. Chromatogr., 734, 213-219 (1996).
Ries-Kautt, M. M., and A. F. Ducruix, “Relative effectiveness of various ions on the solubility and crystal growth of lysozyme,” J. Biol. Chem., 15, 745 (1989).
Sanchez, Antoni, Gordillo M. Angerl, Jose L. Montesinos, Francisco Valero and Javier Lafuente, “On-line determination of the total lipolytic activity in a four-phase system using a lipase adsorption law,” J. Biosci Bioeng, 87, 500-506 (1999).
Schrag, J. D., Y. Li, S. Wu, and M. Cygleis “Glutriad forms the catalytic site of the lipase from Geotrichum candidium,” Nature, 351, 761-764 (1991).
Scopes, P. K., “Protein purification: principle and practice,” 2nd Ed., Springer-Verlag, New York, 39 (1982).
Shen CC, Wu JY, Chen CY and Chen TL, “Lipase production by Acinetobacter radioresistens in the presence of a nonwoven fabric,” Biotechnol Prog, 15, 919-922 (1999).
Shiau, K. S., and T. L. Chen, “Initial protein concentration effects on precipitation by salt,” Biotechnol. Bioeng., 53, 202-206 (1997).
Shih, Y. C., J. M. Prausnitz and H. W. Blanch, “Some characteristics of protein precipitation by salts,” Biotechnol. Bioeng., 40, 1155 (1992).
Sitajer, H., and I. Maliszewska, “Production of exogenous lipase by bacteria, fungi and acitomycetes,” Enzyme Microb. Technol., 10, 492-497 (1988).
Svendsen, A., “Sequence comparisons within the lipase family,” In Woolley, P., and Petersen, S. B. (eds.), Lipases, Cambridge University Press, Cambridge, UK 1-21 (1994).
Sugiura M. and Isobe M., “Studies on the mechanism of the lipase reaction II. Comparative studies of the adsorption of lipases and various proteins at the air-water interface,” Biochim Biophys Acta, 397, 412-417 (1975).
Sztajer, H., Jacek Borkowski, and Krzysztof Sobiech, “Purification and some properties of Pseudomonas fluorescens lipase”, Biotechnology and Applied Biochemistry , 13, 65-71 (1991).
Taipa, M. A., M. R. Aires-Barros and J.M.S. Cabral, “Purification of lipases,” J. Biotechnology, 26, 111-142 (1992).
Terstappen, G. C., Andreas J. Geerts, and Maria-Regina Kula, “The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia,” Biotechnology and Applied Biochemistry, 16, 228-235 (1992).
Tilbeurgh, van, H., M. P. Egloff, C. Martinez, N. Rugani, R. Verger, and C. Cambillu, “Interfacial activation of lipase-procolipase complex by mixed micelles revealed by X-ray Crystallography,” Nature, 362, 814-820 (1993).
Timasheff, S. N., and T. Arakawa, “Mechanism of protein precipitation and stabilization by co-solvent,” J. Cryst. Growth, 90, 39 (1988).
Um, M. J., S. H. Yoon, C. H. Lee, K. Y. Chung, and J. J. Kim, “Flux enhancement with gas injection in crossflow ultrafiltration of oily wastewater,” Wat. Res., 35, 4095-4101 (2001).
Vadehra, D. V., and L. G. Harmon,”Factors affecting production of Staphylococcal lipase,” J. Appl. Bacteriol., 32, 147 (1969).
Vadhera, D., “Staphylococcal lipases,” Lipid, 9,158-165 (1974).
Vera, L., S. Delgado, and S. Elmaleh, “Dimensionless numbers for the steady-state flux of cross-flow microfiltration and ultrafiltration with gas sparging,” Chem. Eng. Sci., 55. 3419-3428 (2000).
Verger, R., “Interfacial activation of lipases: facts and artifacts.” TIBTECH, 15, 32-38 (1997).
Vicente, M. L. C., M. R Aires-Barros., and J. M. S. Cabral, “Purification of Chromobacterium viscosum lipases using reversed micelles,” Biotechnology Techniques, 4, 137-142 (1990).
Vulfson, E. N., “ Industrial applications of lipases,” In Woolley, P., and Petersen, S. B. (eds.), Lipases, Cambridge University Press, Cambridge, UK 271-288. (1994).
Walsh, G., D. Headon, “Protein biotechnology,” John Wiley & Sons, New York, 302-336 (1994).
Wang, H. M., J. Y. Wu, C. Y. Chen, and T. L. Chen, “Recovery of Acinetobacter radioresistens lipase by hydrophobic adsorption to n-hexadecane coated on nonwoven fabric,” Biotechnol. Prog., 19, 464-468 (2003).
Wang, H. M., J. Y. Wu, S. W. Tsai, and T. L. Chen, “Recovery of lipase by adsorption at the n-hexadecane-water interface,” J. Chem. Technol. Biotechnol., (in press).
Wang Ta-Jung and Chen The-Liang, “Lipase production by A. radioresistens in a batch fill-and-draw culture,” Applied Biochem. Biotech,. 73, 185-194 (1998)
Wang, Y.-X., K. C. Srivastava, G.Y. Shen, and H. Y. Wang, “Thermostable alkaline lipase from a newly isolate thermophilic Bacillus, strain A30-1 (ATCC 53841).” J. Ferment. Bioeng. 79, 433-438 (1995).
Wannerberger, K. and T. Arnebrant, “Adsorption of lipase to silica and methylated silica surfaces,” J. Colloid Interface Sci., 177, 316-324 (1996).
Wannerberger, K., S. Welin-Klintström, T. Arnebrant, “Activity and adsorption of lipase from Humicola lanuginosa on surfaces with different wettabilities,” Langmuir, 13, 784-790 (1997).
Wannerberger, K., T. Arnebrant, “Comparison of the adsorption and activity of lipases from Humicola lanuginosa and Candida antarctica on solid surfaces,” Langmuir, 13, 3488-3493 (1997).
Watatnabe, N., Y. Ota, Y. Minoda, and K. Yamada, ”Studies on alkaline lipase from Pseudomonas species. Part I. Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of the crude enzymes,” Agric. Biol. Chem., 41, 365 (1977).
Winkler, F. K., A. D’Arcy, and W. Hunziker, “Structure of human pancreatic lipase,” Nature, 343, 771-774 (1990).
Wu X. Y, S. Jaaskelainen, Y. Y. Linko, “Purification and partial characterization of Rhizomucor miehei lipase for ester synthesis,” Applied Biochemistry and Biotechnology, 59, 145-157 (1996).
Yeh, H. M., “Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules,” Separation Science and Technology, 31(2), 201-211 (1996).
Yeh, H. M.and T. W. Cheng, “Osmotic-pressure model with permeability analysis for ultrafiltration in hollow-fiber membrane module,” Sep. Technol,. 3, 91-98 (1993).
Yeh, H. M., and T. W. Cheng, “Resistance-in-series for membrane ultrafiltration in hollow fibers of tube-and-shell arrangement,” Sep. Sci. Technol., 28, 1341-1355 (1993).
Zechner, Rudolph,“Rapid and simple isolation procedure for lipoprotein lipase from human milk,” Biochimica et Biophysica Acta, 1044, 20-25 (1990).
蕭坤星,“以不同的沉澱法回收蛋白質之研究”,國立成功大學化學工程研究所碩士論文,(1995)。
陳樹人,“以Acinetobacter radioresistens生產耐鹼性脂肪酵素-醱酵生理之探討”,國立成功大學化學工程研究所博士論文,(1999)。
李力男,“傾氣-液兩相平板式薄膜超過濾之研究”,私立淡江大學化學工程研究所碩士論文,(2002)。