| 研究生: |
李秋雯 Lee, Chiu-Wen |
|---|---|
| 論文名稱: |
軋延銅箔-錫界面之反應行為研究 Investigation on the Interfacial Behavior between Copper Foil and Tin |
| 指導教授: |
林光隆
Lin, Kwang-lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 時效熱處理 、分解 、擴散 、孔洞 、銅錫介金屬化合物 、凹槽 |
| 外文關鍵詞: | grooving, diffusion, decompose, aging heat treatment, void, Cu-Sn IMC |
| 相關次數: | 點閱:119 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銅錫介金屬化合物是最易發生在電子構裝上連接電子元件和印刷電路板的銲接點之界面介金屬化合物之一,而經一長時間則易有孔洞生成於銅基材和Cu3Sn化合物及Cu3Sn化合物和Cu6Sn5化合物。界面有孔洞存在會影響電子產品的使用壽命,嚴重則導致電路斷路。
本研究係探討觀察金屬銅-錫界面在高溫時效熱處理(125℃)於不同時間下,其界面微結構和介金屬化合物的變化現象及孔洞成長行為。本實驗以軋延銅箔和純金屬錫在迴焊後研磨至觀察面,把試片放置烘箱內(125℃),再於不同時間點觀察界面微結構變化。至時效熱處理1475小時由試片另一端於不同時間下使用CP(Cross-section Polish)作觀察內部界面微結構變化及孔洞生成。
至時效熱處理90小時,在靠近錫基材的扇貝狀Cu6Sn5化合物之尖端被分解而消長,其上方的Cu3Sn化合物則呈現迅速成長。然而在經時效熱處理2854小時後,Cu3Sn化合物和Cu6Sn5化合物仍持續緩慢成長,但在944小時前為迅速成長的形態。在為一自由表面,Cu3Sn化合物會呈現突出於共平面的方向成長,而Cu6Sn5化合物則會產生凹陷於共平面,因表面的Cu6Sn5化合物表面自由能高,而易被分解成Cu3Sn化合物和錫原子。
時效熱處理2455小時經CP處理後,可發現在試片內部已有少量的孔洞生成於銅基材和Cu3Sn化合物界面;至2616小時後再使用CP處理,則可觀察到孔洞已幾乎連成一線存在銅基材和Cu3Sn化合物界面,而在2854小時的表面銅基材和Cu3Sn化合物界面仍沒有孔洞被發現,因內部的擴散速度與在表面的擴散速度不同。
Tin-Copper intermetallic compound is one of the most common compounds that form at the interface between solder and substrate. Voids could form between Copper substrate and Cu3Sn、 Cu3Sn、Cu6Sn5 compounds upon heat aging. The voids may segregate to induce circuit opening.
This present study investigated the variations in interfacial microstructure, IMC, and voids formation phenomenon at the Sn/Cu interface upon heat treatment at 125℃. Void was observed after aging 1475 hours.
The scallop Cu6Sn5 compound decomposes after heat aging for 90 hours, while the upper Cu3Sn compound grew rapidly. However, the Cu3Sn and Cu6Sn5 compounds keep growing when aging up to 2854 hours. The Cu3Sn compound intends to grow in the Z direction while the Cu6Sn5 compound grow on the X-Y plane when the compounds grow on a free surface.
Voids were observed at the interface between copper substrate and Cu3Sn compound in the specimen after 2455 hours thermal effect and CP process. The voids segregate to form a linear crack after aging for 2616 hours. On the other hand, no void was observed after 2854 hours between copper substrate and Cu3Sn compound. This phenomenon was ascribed to the difference in diffusion speed between bulk diffusion and surface diffusion.
1. J. Barrett, “Electronic systems packaging: future reliability challenges”, Microelectronics Reliability, Vol. 38, pp. 1277~1286, 1998.
2. R. J. Coyle, P. P. Solan, A. J. Serafino, and S. A. Gahr, “The influence. of room temperature aging on ball shear strength and microstructure of. area array solder balls,” in Proc. 50th ECTC, Las Vegas, NV, USA, September, p.160, 2000.
3. M. Amagai, “Characterization of chip scale packaging materials”, Microelectronics Reliability, Vol. 39, 1365~1377, 1999.
4. C.T. Su and T. L. Chiang, “Optimal Design for a Ball Grid Array Wire Bonding Process Using a Neuro-Genetic Approach”, IEEE Transactions on Components, Packaging and Manufacturing, Vol. 25, No. 1, pp. 13~18, 2002.
5. 陳秋雲,VLSI 製造技術,全華科技圖書股份有限公司,台灣,1998。
6. R. J. Wassink, “Soldering in Electronics”, Electrochemical Pub. Ltd, p99, 1984
7. 張道智, 游善溥, 張喬雲, “無鉛組裝之材料選擇”, 工業技術研究院.
8. J. H. Lau and Y. H. Pao, “Solder Joint Reliability of BGA, CSP, Filp Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, New York, USA, 1997, Chapter 3.
9. C. H. Zhong and S. Yi, “Solder Joint Reliability of Plastic Ball Grid Array Packages”, Soldering and Surface Mount Technology, Vol. 11, No. 1, 1999, pp. 44-48.
10.張淑如,“鉛對人體的危害”, 勞工安全衛生簡訊, 第12 期, p.17, 1995。
11. B. Trumble, “Get the Lead Out,” IEEE Spectrum, pp. 55~60, 1998.
12.莊東漢,電子月刊第八卷第三期,p226-236。
13. T. B. Massalski, “Binary Alloy Phase Diagrams”, William W. Scott, Vol. 1, pp. 965, 1986.
14. P. T. Vianco, K. L. Erickson, and P. L. Hopkins, “Solid state Intermetallic Compound Growth Between Copper and High Temperature, Tin-Rich Solders- -Part I: Experimental Analysis”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 721-728, 1994.
15. H. K. Kim, H. K. Liou, and K. N. Tu, “Three-dimensional Morphology of a Very Rough Interface Formed in the Soldering Reaction Between Eutectic SnPb and Cu” Applied Physics Letters, Vol. 66, pp.2337-2339, 1995.
16. H. K. Kim and K. N. Tu, “Rate of Consumption of Cu in Soldering Accompanied by Ripening” Applied Physics Letters, Vol. 67, pp.2002-2004, 1995.
17. P. T. Vianco, P. F. Hlava, and A. C. Kilgo, “Intermetallic Compound Layer Formation Between Copper and Hot-Dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb Coatings”, Journal of Electronic Materials, Vol.23, No. 7, pp. 583-594, 1994.
18. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Metallurgica et Materialia, Vol.43, No. 1, pp. 329-337, 1995.
19. S. K. Kang, R. S. Rai, and S. Purushothaman, “Interfacical Reactions During Soldering with Lead-Tin Eutectic and Lead-free Tin-rich Solders”, Journal of Electronic Materials, Vol. 25, No. 7, pp.1113-1120, 1996.
20. C. Y. Liu, Chih Chen, and K. N. Tu, "Electromigraiton of thin strips of SnPb solder as a function of composition," J. Appl. Phys., 88, 5703-5709 (2000).
21. R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd Edition, PWS Publishing. Company, Boston, 1998.
22. A. C. K. So, Y. C. Chan and J. K. L. Lai, “Aging Studing of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints”, IEEE Trans. Comp. Packg. Manuf. Tech. B, 20, pp. 161-166, 1997.
23. M. S. Shin, Y. H. Kim, W. C. Do, S. H. Ha and B. Y. Min, “Intermetallic formation in the Sn -Ag solder joints between Au Stud bumps and Cu pads and its effect on the chip shear Ss rength,” Electronic Materials and Packaging, pp. 155-162, 2001.
24. E. Zakel, G. Azdasht, and H. Reichi, “Degradation of TAB Outer Lead Contacts Due to the Au-Concentration in Eutectic Tin/Lead Solder,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol.17, pp. 569-577, 1994.
25. B.J. Lee, N.M. Hwang and H.M. Lee, “Prediction of Interface Reaction Products between Cu and Various Solder Alloys by Thermodynamic Calculation,”Acta Materialia, Vol.45, pp.1867-1874, 1996.
26. M.J. Haji-Sheikh, D. Ulz, and M. Campbell, “The Effect of Varying the Cu/Au Ratio on the Termal-Cycle Fatigue Life of 95/5 PbSn Bumps, ” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, Vol.20, pp.491-495, 1997.
27. G. Y. Li and Y. C. Chan, “Aging Effects on Shear Fatigue Life and Shear Strength of Soldered Thick Film Joints, ” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol.21, pp. 398-406, 1998.
28.許樹恩, 吳泰伯, “X光繞射原理與材料結構分析”,新竹,中國材料 會,九十三年九月
29.余昌和, “錫鋅銀銲錫合金元素在焊錫過程對銅金屬反應影響之研究”, 博士論文, 成功大學材料系, 44~48頁, 2006
30. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, Journal of Applied Physics 97, 024508, 2005.
31.T.H. Chuang, H.M. Wu, M.D. Cheng, S.Y. Chang, and S.F. Yen, Mechanisms for Interfacial Reactions between Liquid Sn-3.5Ag Solders and Cu substrate”, Journal of Electronic Materials, Vol. 33, No. 1, pp.22-27, 2004.
32. H.K. Kim, and K.N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening”, Physical review B, Vol. 53, No. 23, pp.16027-16034, 1996.
33. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Mat. Chem. and Phys., 46, pp. 217-223, 1996.
34. K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 21, pp. 347-354, 1973.
35. K. N. Tu, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 30, pp. 947-952, 1982
36.W. Yang, R. W. Messier Jr., and E.F. Lawrence, “Microstructure evolution of eutectic Sn-Ag solder joints”, Journal of Electronic Materials, 23, pp.765, 1994.
37. K. N. Tu, “Cu/Sn interfacial Reactions: Thin-film Case versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, No. 2-3, 1998, pp. 217-223.
38. K. N. Tu, F. Ku, and T. Y. Lee, “Morphological stability of solder re-. action products in flip chip technology,” Journal of Electronic Materials, vol. 30, pp. 1129–1132, 2001.
39. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting reaction vs. solid state aging of eutectic SnPb on Cu”, J. Appl. Phys. 89, pp. 4843-4849, 2001.
40.C. Y. Liu, J. T. Chen, Y. C. Chuang, Lin, Ke and S. J. Wang, “Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in Flip-chip Cu/Sn/Cu joints”, Applied Physics Letters, Vol. 90, 112114, 2007.
41. R. Labie, W. Ruythooren, and J.V. Humbeeck, “Solid state diffusion in CueSn and NieSn diffusion couples with flip-chip scale dimensions” Intermetallics 15, pp. 396-403, 2007