簡易檢索 / 詳目顯示

研究生: 蕭銘諒
Hsiao, Ming-Liang
論文名稱: 電紡絲奈米碳纖維與NiCo2O4複合膜應用於鋰離子電池負極之研究
Electrospun carbon nanofibers and their composites with NiCo2O4 as anodes for lithium ion batteries
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 124
中文關鍵詞: 電紡絲奈米碳纖維鋰離子電池負極材料NiCo2O4膠態高分子電解質電漿改質
外文關鍵詞: electrospun carbon nanofibers, lithium ion battery, NiCo2O4, gel polymer electrolyte, plasma treatment
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電紡絲法利用不同聚丙烯腈(polyacrylonitrile, PAN)前驅物濃度,製備不同直徑奈米碳纖維,再以水熱法以及經過300 oC熱處理後,使碳纖維表面成長NiCo2O4。隨著碳纖維直徑的增加,NiCo2O4由針狀轉變成為聚集片狀結構。針狀結構之碳纖維/NiCo2O4複合膜具有較大比表面積和中孔孔洞體積,使電極材料與電解液能有更大接觸面積,以及有利於鋰離子之儲存和傳遞。碳纖維網狀導電結構提供電子之快速傳遞通道以及能緩解充放電過程中NiCo2O4之體積膨脹。此外,LiF產生於複合膜表面不利於電解液以及複合膜電極之電荷轉移反應,發現針狀結構之CNF/ NiCo2O4產生LiF的量遠小於聚集片狀結構之CNF/NiCo2O4,代表針狀結構之CNF/ NiCo2O4複合膜能有效減少電解液之分解,提升電化學表現。因此,針狀結構之碳纖維/NiCo2O4複合膜具有應用於鋰離子電池負極之優勢。
    本研究亦製備PAN/poly(methyl methacrylate)電紡絲薄膜,再浸泡於有機電解液中,得到膠態高分子電解質薄膜。我們探討碳纖維表面官能基對於其在膠態高分子電解質系統中之電化學表現。碳纖維表面之C-O鍵結、氧電漿改質碳纖維(CNF-O)表面之氧官能基團、氮電漿改質碳纖維(CNF-N)表面之C-O及C-N鍵結,皆有利於增加與極性EC+DEC電解液之親和性。CNF-N之吡啶氮及石墨氮比例較高,使其具有較佳的導電度,當其應用於膠態高分子電解質系統中,電化學阻抗相較於純碳纖維及氧電漿改質碳纖維還要小。CNF-O則因氮原子比例少,造成導電度降低,形成電化學阻抗大之現象,不利於電化學之表現。此外,由F1s XPS分峰圖譜中觀察到CNF-O所含LiF比例最高,此不利於電化學表現。

    Carbon nanofibers with various diameters were prepared using electrospinning in the polyacrylonitrile (PAN) solution with different concentrations. As-prepared PAN nanofibers were subjected to thermal treatment to convert to carbon nanofibers (CNF). Subsequently, NiCo2O4 was grown on the fiber surface through a hydrothermal method and post thermal treatment at 300 oC. When the fiber diameter increased, CNF/NiCo2O4 composites transformed from a needle-like structure to irregular aggregated nanosheets. The needle-like CNF/NiCo2O4 composite exhibited the high specific surface area and rich mesopores, facilitated ion transport across the electrolyte/electrode interfaces and lithium ion storage. Additionally, interconnected carbon fibers offered the conductive path for electron transfer and alleviated the volume change in CNF/NiCo2O4 composites during charging and discharging.
    We prepared a gel polymer electrolyte composed of an electrospun polymer PAN/poly(methyl methacrylate) membrane, swollen with the liquid electrolyte. We investigated the effects of the functional groups of electrospun carbon nanofibers on the electrochemical performance of the battery system with the gel polymer electrolyte. Furthermore, CNF-N possessed the higher amount of pyridinic nitrogen and graphitic nitrogen, resulting in their high electrical conductivity. Consequently, CNF-N exhibited lower resistance than CNF and CNF-O. CNF-O exhibited higher resistance, which was attributed to the less amount of nitrogen, causing their low electrical conductivity. Moreover, according to the result of F1s XPS, CNF-O had the higher amount of LiF. These behaviors resulted in their poor electrochemical performance.

    摘要 I Extend abstract II 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1鋰離子電池 3 2.1.1鋰離子電池歷史發展 3 2.1.2鋰離子電池介紹 5 2.1.3鋰離子電池工作原理 8 2.1.4碳材料作為負極材料 11 2.2奈米纖維製備 14 2.2.1 電紡絲技術簡介 14 2.2.2 電紡絲製程影響參數 15 2.2.3 PAN奈米纖維熱處理 19 2.2.4電紡絲碳纖維應用於鋰離子電池之負極材料 21 2.3碳纖維/鎳鈷氧化物復合材料 24 2.3.1 複合氧化物簡介 24 2.3.2 鎳鈷氧化物特性 24 2.3.3 製備NiCo2O4材料 26 2.3.4 製備碳材/ NiCo2O4複合電極材料 29 第三章 實驗 33 3.1 實驗藥品與儀器 33 3.1.1 實驗藥品 33 3.1.2 實驗儀器 35 3.2 CNF/NiCo2O4實驗方法 36 3.2.1 電紡絲裝置 36 3.2.2 製備奈米碳纖維薄膜及表面改質 37 3.2.3 碳纖維/鎳鈷氧化物複合膜製備 38 3.3 膠態高分子電解質實驗方法 39 3.3.1 膠態高分子電解質製備 39 3.3.2 碳纖維表面改質製備 39 3.4鋰離子電池組裝及儀器參數實驗方法 40 3.4.1 鋰離子電池組裝與電化學分析 40 3.4.2 實驗儀器參數設定 41 第四章 結果與討論 44 4.1 CNF/ NiCo2O4複合膜 44 4.1.1 CNF/NiCo2O4複合膜分析 44 4.1.2 CNF/NiCo2O4複合膜電化學測試 63 4.2 膠態電解質與改質碳纖維負極之應用 86 4.2.1 膠態高分子電解質薄膜之分析 86 4.4.2 改質碳纖維分析 89 4.2.3 膠態高分子電解質與改質碳纖維電化學分析 98 第五章 結論 113 參考文獻 115

    [1] D. Zhu, C. Xu, N. Nakura, and M. Matsuo, "Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution," Carbon, 40, 3, 363-373, 2002.
    [2] J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto, and M. Arakawa, "A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte," Journal of Power Sources, 74, 219-227, 1998.
    [3] J. O. Besenhard, "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes," Carbon,14, 111-115, 1976.
    [4] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density," Materials Research Bulletin, 15, 783-789, 1980.
    [5] 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術, 五南圖書出版公司, 2010.
    [6] G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, 89, 292-308, 2018.
    [7] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, 414, 359, 2001.
    [8] 洪為民, "鋰離子二次電池原理, 特性與應用," 小型二次電池市場與技術專輯, 工業材料系列叢書, 7, 58-63, 1996.
    [9] 林素琴, "大好前景-鋰電池材料發展分析," 工研院電子報, 2009.
    [10] B. Scrosati and J. Garche, "Lithium batteries: Status, prospects and future," Journal of Power Sources, 195, 2419-2430, 2010.
    [11] 賴世榮, "智慧型鋰離子電池殘存電量估測之研究," 碩士論文, 電機工程學系研究所, 國立中山大學, 2004.
    [12] I. Exnar, L. Kavan, S. Y. Huang, and M. Grätzel, "Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide," Journal of Power Sources, 68, 720-722, 1997.
    [13] B. P. Miller, "Automotive lithium-ion batteries," Johnson Matthey Technology Review, 59, 4-13, 2015.
    [14] E. Peled, D. Golodnitsky, and G. Ardel, "Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes," Journal of The Electrochemical Society, 144, L208-L210, 1997.
    [15] J. Vetter et al., "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, 147, 269-281, 2005.
    [16] R. E. Franklin, "Crystallite growth in graphitizing and non-graphitizing carbons," Proc. R. Soc. Lond. A, 209, 196-218, 1951.
    [17] J. R. Dahn, T. Zheng, Y. Liu, and J. Xue, "Mechanisms for lithium insertion in carbonaceous materials," Science, 270, 590-593, 1995.
    [18] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, "Insertion electrode materials for rechargeable lithium batteries," Advanced materials, 10, 725-763, 1998.
    [19] M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, "A review of heat treatment on polyacrylonitrile fiber," Polymer Degradation and Stability, 92, 1421-1432, 2007.
    [20] Y. Wu, C. V. Bobba, and S. Ramakrishna, "Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems," Current Organic Chemistry, 17, 1411-1423, 2013.
    [21] Y. Li and B. Fitch, "Effective enhancement of lithium-ion battery performance using SLMP," Electrochemistry Communications, 13, 664-667, 2011.
    [22] L. Feng et al., "Super-hydrophobic surface of aligned polyacrylonitrile nanofibers," Angewandte Chemie International Edition, 41, 1221-1223, 2002.
    [23] P. X. Ma and R. Zhang, "Synthetic nano-scale fibrous extracellular matrix," Journal of Biomedical Materials Research, 46, 60-72, 1999.
    [24] G. Liu et al., "Polystyrene-block-poly(2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization, and liquid crystalline properties," Chemistry – A European Journal, 5, 2740-2749, 1999.
    [25] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, "Controlled deposition of electrospun poly(ethylene oxide) fibers," Polymer, 42, 8163-8170, 2001.
    [26] A. Formhals, "Process and apparatus for preparing artificial threads," US Pat, 1975504, 1934.
    [27] D.-R. Chen, D. Y. H. Pui, and S. L. Kaufman, "Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range," Journal of Aerosol Science, 26, 963-977, 1995.
    [28] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, 7, 216, 1996.
    [29] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, "The change of bead morphology formed on electrospun polystyrene fibers," Polymer, 44, 4029-4034, 2003.
    [30] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, 43, 4403-4412, 2002.
    [31] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, 40, 7397-7407, 1999.
    [32] C. Kim et al., "Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries," Advanced Functional Materials, 16, 2393-2397, 2006.
    [33] T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo, and J. W. Choi, "Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes," Nano letters, 12, 802-807, 2012.
    [34] L. Wang, Y. Yu, P.-C. Chen, and C.-H. Chen, "Electrospun carbon–cobalt composite nanofiber as an anode material for lithium ion batteries," Scripta Materialia, 58, 405-408, 2008.
    [35] Y. Yu, L. Gu, C. Zhu, P. A. van Aken, and J. Maier, "Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries," Journal of the American Chemical Society, 131, 15984-15985, 2009.
    [36] J. F. Marco et al., "Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4," Journal of Materials Chemistry, 11, 3087-3093, 2001.
    [37] M. Lenglet, R. Guillamet, J. Dürr, D. Gryffroy, and R. E. Vandenberghe, "Electronic structure of NiCo2O4 by XANES, EXAFS and 61Ni Mössbauer studies," Solid State Communications, 74, 1035-1039, 1990.
    [38] Y. Li, P. Hasin, and Y. Wu, "NixCo3− xO4 nanowire arrays for electrocatalytic oxygen evolution," Advanced materials, 22, 1926-1929, 2010.
    [39] X. Han, X. Gui, T.-F. Yi, Y. Li, and C. Yue, "Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries," Current Opinion in Solid State and Materials Science, 22, 109-126, 2018.
    [40] Y. Sharma and M. Srinivasan, "Nanofibers-NiCo2O4: Fabrication and Li-storage properties," AIP Conference Proceedings, 1447, 365-366, 2012.
    [41] T. Li, X. Li, Z. Wang, H. Guo, and Y. Li, "A novel NiCo2O4 anode morphology for lithium-ion batteries," Journal of Materials Chemistry A, 3, 11970-11975, 2015.
    [42] L. Shen, L. Yu, X.-Y. Yu, X. Zhang, and X. W. Lou, "Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior atructures for lithium-ion batteries and supercapacitors," Angewandte Chemie International Edition, 54, 1868-1872, 2015.
    [43] J. Wang, M. Chen, C. Wang, B. Hu, and J. Zheng, "Amphiphilic carbonaceous material modified graphite as anode material for lithium-ion batteries," Materials Letters, 64, 2281-2283, 2010.
    [44] Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, and H.M. Cheng, "Graphene/metal oxide composite electrode materials for energy storage," Nano Energy, 1, 107-131, 2012.
    [45] T.F. Yi, S.-Y. Yang, and Y. Xie, "Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries," Journal of Materials Chemistry A, 3, 5750-5777, 2015.
    [46] Y. Chen, M. Zhuo, J. Deng, Z. Xu, Q. Li, and T. Wang, "Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo2O4 nanoplates for lithium-ion batteries," Journal of Materials Chemistry A, 2, 4449-4456, 2014.
    [47] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, and Z. Gu, "Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage," Nano letters, 8, 2664-2668, 2008.
    [48] W. Liu, C. Lu, K. Liang, and B. K. Tay, "A high-performance anode material for Li-ion batteries based on a vertically aligned CNTs/NiCo2O4 core/shell structure," Particle & Particle Systems Characterization, 31, 1151-1157, 2014.
    [49] J.M. Syu, M.L. Hsiao, and C.T. Lo, "Electrospun carbon fiber/Ni–Co composites as binder-free anodes for lithium-Ion batteries," Journal of The Electrochemical Society, 164, A3903-A3913, 2017.
    [50] S. Abouali, M. Akbari Garakani, Z.-L. Xu, and J.-K. Kim, "NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors," Carbon, 102, 262-272, 2016.
    [51] X. Cheng, D. Zhang, X. Liu, D. Cao, and G. Wang, "Influence of CTAB on morphology, structure, and supercapacitance of β-Ni(OH)2," Ionics, 21, 533-540, 2014.
    [52] G. Zhou et al., "Tufted NiCo2O4 nanoneedles grown on carbon nanofibers with advanced electrochemical property for lithium ion batteries," Electrochimica Acta, 222, 1878-1886, 2016.
    [53] L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang, and M. Liu, "Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors," Nano letters, 13, 3135-3139, 2013.
    [54] Y. Wei et al., "Solvent-controlled synthesis of NiO–CoO/carbon fiber nanobrushes with different densities and their excellent properties for lithium ion storage," ACS applied materials & interfaces, 7, 21703-21711, 2015.
    [55] G. Zhang and X. W. D. Lou, "Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors," Scientific reports, 3, 1470, 2013.
    [56] L. Chen and J. Zhu, "Metal nanoparticle-directed NiCo2O4 nanostructure growth on carbon nanofibers with high capacitance," Chemical Communications, 50, 8253-8256, 2014.
    [57] F. Deng et al., "Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors," Journal of Power Sources, 251, 202-207, 2014.
    [58] Z. Zhang, Y. Wang, and X. Wang, "Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid," Nanoscale, 3, 1663-1674, 2011.
    [59] N. Padmanathan and S. Selladurai, "Controlled growth of spinel NiCo2O4 nanostructures on carbon cloth as a superior electrode for supercapacitors," RSC Advances, 4, 8341-8349, 2014.
    [60] L. Peng, H. Zhang, L. Fang, Y. Bai, and Y. Wang, "Designed functional Systems for high-performance lithium-ion batteries anode: from solid to hollow, and to core–shell NiCo2O4 nanoparticles encapsulated in ultrathin carbon nanosheets," ACS Applied Materials & Interfaces, 8, 4745-4753, 2016.
    [61] M. S. Dresselhaus, A. Jorio, and R.Saito, "Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy," Annual Review of Condensed Matter Physics, 1, 89-108, 2010.
    [62] C. Zhang and J.-S. Yu, "Morphology-tuned synthesis of NiCo2O4-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries," Chemistry – A European Journal, 22, 4422-4430, 2016.
    [63] N. Jabeen, Q. Xia, M. Yang, and H. Xia, "Unique core–shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4 support for high-performance supercapacitor electrodes," ACS Applied Materials & Interfaces, 8, 6093-6100, 2016.
    [64] 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術, 五南圖書出版公司, 2010.
    [65] R. Dedryvère, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, and J. M. Tarascon, "Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium," Chemistry of Materials, 16, 1056-1061, 2004.
    [66] D. Lei, X.-D. Li, M.-K. Seo, M.-S. Khil, H.-Y. Kim, and B.-S. Kim, "NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors," Polymer, 132, 31-40, 2017.
    [67] W. Chen et al., "Hierarchical flower-like NiCo2O4@TiO2 hetero-nanosheets as anodes for lithium ion batteries," RSC Advances, 7, 47602-47613, 2017.
    [68] J. G. Kim, D. L. Pugmire, D. Battaglia, and M. A. Langell, "Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy," Applied Surface Science, 165, 70-84, 2000.
    [69] Z. Ryu, J. Zheng, M. Wang, and B. Zhang, "Characterization of pore size distributions on carbonaceous adsorbents by DFT," Carbon, 37, 1257-1264, 1999.
    [70] Q. Wang, H. Li, L. Chen, and X. Huang, "Novel spherical microporous carbon as anode material for Li-ion batteries," Solid State Ionics, 152, 43-50, 2002.
    [71] A. Jain, B. J. Paul, S. Kim, V. Jain, J. Kim, and A. K. Rai, "Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery," Journal of Alloys and Compounds, 772, 72-79, 2019.
    [72] L. Hu, L. Wu, M. Liao, X. Hu, and X. Fang, "Electrical transport properties of large, individual NiCo2O4 nanoplates," Advanced Functional Materials, 22, 998-1004, 2012.
    [73] W.-H. Ryu, J. Shin, J.-W. Jung, and I.-D. Kim, "Cobalt(ii) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries," Journal of Materials Chemistry A, 1, 3239-3243, 2013.
    [74] L. Shen, Q. Che, H. Li, and X. Zhang, "Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder‐free flexible electrodes for energy storage," Advanced Functional Materials, 24, 2630-2637, 2014.
    [75] J. Li, S. Xiong, Y. Liu, Z. Ju, and Y. Qian, "High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries," ACS applied materials & interfaces, 5, 981-988, 2013.
    [76] C. Wang, A. J. Appleby, and F. E. Little, "Irreversible capacities of graphite anode for lithium-ion batteries," Journal of Electroanalytical Chemistry, 519, , 9-17, 2002.
    [77] S. Chaudhari, D. Bhattacharjya, and J. S. Yu, "Facile synthesis of hexagonal NiCo2O4 nanoplates as high‐performance anode material for Li‐ion batteries," Bulletin of the Korean Chemical Society, 36, 2330-2336, 2015.
    [78] A. K. Mondal, D. Su, S. Chen, X. Xie, and G. Wang, "Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability," ACS applied materials & interfaces, 6, 14827-14835, 2014.
    [79] P. Suresh Kumar et al., "Free-standing electrospun carbon nanofibres—a high performance anode material for lithium-ion batteries," Journal of Physics D: Applied Physics, 45, 265-302, 2012.
    [80] S. Chen, J. Wu, R. Zhou, Y. Chen, Y. Song, and L. Wang, "Controllable growth of NiCo2O4 nanoarrays on carbon fiber cloth and its anodic performance for lithium-ion batteries," RSC Advances, 5, 104433-104440, 2015.
    [81] L. Li et al., "The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties," Journal of Materials Chemistry A, 1, 10935-10941, 2013.
    [82] L. Shen, Q. Che, H. Li, and X. Zhang, "Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage," Advanced Functional Materials, 24, 2630-2637, 2014.
    [83] A. K. Mondal, H. Liu, Z. F. Li, and G. Wang, "Multiwall carbon nanotube-nickel cobalt oxide hybrid structure as high performance electrodes for supercapacitors and lithium ion batteries," Electrochimica Acta, 190, 346-353, 2016.
    [84] Y. Mo et al., "Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance," Journal of Materials Chemistry A, 3, 19765-19773, 2015.
    [85] J. Cho, Y.-C. Jung, Y. S. Lee, and D.-W. Kim, "High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries," Journal of membrane science, 535, 151-157, 2017.
    [86] G.-H. Shih and W.-R. Liu, "A facile microwave-assisted approach to the synthesis of flower-like ZnCo2O4 anode materials for Li-ion batteries," RSC Advances, 7, 42476-42483, 2017.
    [87] S. Chen, J. Wu, R. Zhou, Y. Chen, Y. Song, and L. Wang, "Controllable growth of NiCo2O4 nanoarrays on carbon fiber cloth and its anodic performance for lithium-ion batteries," RSC Advances, 5, 104433-104440, 2015.
    [88] Y. Li and X. Wu, "Fabrication of urchin-like NiCo2O4 microspheres assembled by using SDS as soft template for anode materials of Lithium-ion batteries," Ionics, 24, 1329-1337, 2018.
    [89] U. Kumar Sen, A. Shaligram, and S. Mitra, "Intercalation anode material for lithium ion battery based on molybdenum dioxide," ACS applied materials & interfaces, 6, 14311-14319, 2014.
    [90] J. Tang, S. Ni, Q. Chen, X. Yang, and L. Zhang, "Optimized fabrication of NiCr2O4 and its electrochemical performance in half-cell and full-cell lithium ion batteries," Journal of Alloys and Compounds, 698, 121-127, 2017.
    [91] M.-S. Balogun et al., "A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials," Nano research, 9, 2823-2851, 2016.
    [92] D. Wei et al., "In situ construction of interconnected SnO2/nitrogen-doped Carbon@ TiO2 networks for lithium-ion half/full cells," Electrochimica Acta, 290, 312-321, 2018.
    [93] C. Chae, H. J. Noh, J. K. Lee, B. Scrosati, and Y. K. Sun, "A high‐energy Li‐ion battery using a silicon‐based anode and a nano‐structured layered composite cathode," Advanced Functional Materials, 24, 3036-3042, 2014.
    [94] J. Wang, G. Wang, and H. Wang, "Flexible free-standing Fe2O3/graphene/carbon nanotubes hybrid films as anode materials for high performance lithium-ion batteries," Electrochimica Acta, 182, 192-201, 2015.
    [95] T. Evans, J.-H. Lee, V. Bhat, and S.-H. Lee, "Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries," Journal of Power Sources, 292, 1-6, 2015.
    [96] X. Li et al., "Polymer electrolytes based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries," Journal of Power Sources, 167, no. 2, pp. 491-498, 2007.
    [97] S. W. Choi, S. M. Jo, W. S. Lee, and Y. R. Kim, "An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications," Advanced Materials, 15, 2027-2032, 2003.
    [98] P. Raghavan et al., "Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries," Journal of Power Sources, 195, 6088-6094, 2010.
    [99] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, and C. Nah, "Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries," Journal of Power Sources, 196, 6742-6749, 2011.
    [100] Y. Mao et al., "Lithium storage in nitrogen-rich mesoporous carbon materials," Energy & Environmental Science, 5, 7950-7955, 2012.
    [101] D. Nan et al., "Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials," Journal of Materials Chemistry A, 2, 19678-19684, 2014.
    [102] C. Hu et al., "Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries," Nanoscale, 5, 2726-2733, 2013.
    [103] K.-Y. Wang, Y.-K. Chiu, and H.-C. Cheng, "Electrochemical capacitors of horizontally aligned carbon nanotube electrodes with oxygen plasma treatment," Journal of The Electrochemical Society, 164, A1587-A1594, 2017.
    [104] G. Lota, J. Tyczkowski, R. Kapica, K. Lota, and E. Frackowiak, "Carbon materials modified by plasma treatment as electrodes for supercapacitors," Journal of Power Sources, 195, 7535-7539, 2010.
    [105] T. Shi, X. Wang, J. Deng, and Z. Wen, "The mechanism at the initial stage of the room-temperature oxidation of coal," Combustion and Flame, 140, 332-345, 2005.
    [106] Y. Shao et al., "Nitrogen-doped graphene and its electrochemical applications," Journal of Materials Chemistry, 20, 7491-7496, 2010.
    [107] B. Ouyang, Y. Zhang, Y. Wang, Z. Zhang, H. J. Fan, and R. S. Rawat, "Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance," Journal of Materials Chemistry A, 4, 17801-17808, 2016.
    [108] C. Chen et al., "Synthesis of nitrogen‐doped electrospun carbon nanofibers as anode material for high‐performance sodium‐ion batteries," Energy Technology, 4, 1440-1449, 2016.
    [109] R. A. Adams, J.-M. Syu, Y. Zhao, C.-T. Lo, A. Varma, and V. G. Pol, "Binder-free N-and O-rich carbon nanofiber anodes for long cycle life K-ion batteries," ACS applied materials & interfaces, 9, 17872-17881, 2017.
    [110] D. Pan et al., "Li storage properties of disordered graphene nanosheets," Chemistry of Materials, 21, 3136-3142, 2009.
    [111] H. Wang et al., "Nitrogen-doped graphene nanosheets with excellent lithium storage properties," Journal of Materials Chemistry, 21, 5430-5434, 2011.
    [112] M. Rao, X. Geng, Y. Liao, S. Hu, and W. Li, "Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery," Journal of membrane science, 399, 37-42, 2012.
    [113] S. Bhattacharya, A. R. Riahi, and A. T. Alpas, "Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes – SEI formation and graphite damage mechanisms," Carbon, 77, 99-112, 2014.
    [114] R. A. Adams, J.-M. Syu, Y. Zhao, C.-T. Lo, A. Varma, and V. G. Pol, "Binder-free N- and O-Rich carbon nanofiber anodes for long cycle life K-ion batteries," ACS Applied Materials & Interfaces, 9, 17872-17881, 2017.
    [115] G. G. Eshetu et al., "In-depth interfacial chemistry and reactivity focused investigation of lithium–imide-and lithium–imidazole-based electrolytes," ACS applied materials & interfaces, 8, 16087-16100, 2016.
    [116] P.-L. Kuo, W.-J. Liang, and T.-Y. Chen, "Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4," Polymer, 44, 2957-2964, 2003.
    [117] M. Nádherná, J. Reiter, J. Moškon, and R. Dominko, "Lithium bis(fluorosulfonyl)imide–PYR14TFSI ionic liquid electrolyte compatible with graphite," Journal of Power Sources, 196, 7700-7706, 2011.
    [118] O. s. Vargas, A. l. Caballero, J. n. Morales, and E. Rodríguez-Castellón, "Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries," ACS applied materials & interfaces, 6, 3290-3298, 2014.
    [119] J. Shim and K. A. Striebel, "Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4," Journal of Power Sources, 119, 955-958, 2003.
    [120] J. Hassoun et al., "An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode," Nano letters, 14, 4901-4906, 2014.
    [121] O. Vargas, Á. Caballero, J. Morales, G. A. Elia, B. Scrosati, and J. Hassoun, "Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell," Physical Chemistry Chemical Physics, 15, 20444-20446, 2013.

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE