研究生: |
郭恩瑋 Kuo, En-Wei |
---|---|
論文名稱: |
以養豬廢水培養本土微藻同時進行養豬廢水處理及微藻藻體生產 Cultivating indigenous microalgae with piggery wastewater for simultaneous piggery wastewater treatment and microalgal biomass production |
指導教授: |
張嘉修
Chang, Jo-Shu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 175 |
中文關鍵詞: | 微藻 、養豬廢水處理 、循環經濟 、Chlorella sorokiniana AK-1 、蛋白質 、葉黃素 、工程策略 、半批次操作 、固定化載體 、海綿 、活性碳 、雙載體系統 、光/暗循環 |
外文關鍵詞: | microalgae, piggery wastewater treatment, circular economy, Chlorella sorokiniana AK-1, nutrients removal, microalgal protein, microalgal lutein, engineering strategy, semi-batch operation, solid carrier, sponge, dual carriers, scale-up cultivation, light/dark cycle |
相關次數: | 點閱:150 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
養豬廢水富含有機碳、氮及磷,若是直接排放至水體中,將會造成嚴重的環境污染及水體優養化。因此,養豬廢水在排放至環境前,通常需經過適當的廢水處理過程。養豬廢水中的成分正好是微藻生長所需的營養源,故可被利用來養殖微藻,同時也可淨化廢水,可謂一舉兩得。此外,在微藻養殖後所得到的藻體,由於具有豐富的營養成分,可被做為畜產及水產飼料添加劑,為微藻豬廢水處理程序提供額外的收益,且可避免傳統豬廢水處理程序中產生大量污泥造成二次污染的問題。根據上述論點,本研究的目標將聚焦於以本土微藻進行養豬廢水處理之效能評估及最適化操作策略。
首先使用未經滅菌的養豬廢水為培養基,進行微藻藻種篩選,藉此篩選出對養豬廢水耐受性高且生長快速的藻種,以進行後續廢水處理試驗。在實驗結果顯示,將Chlorella sorokiniana AK-1培養於含有10%養豬廢水的BG-11培養基中,在化學需氧量(COD)、生物需氧量(BOD)、總氮(TN)、總磷(TP)之移除效率以及微藻藻體生產效率各方面,皆有最佳的表現。接著,使用50%養豬廢水混和BG-11作為培養基時,有最佳的Chlorella sorokiniana AK-1生長效率及廢水處理效果。後續為節省成本,進一步探討減少廢水培養基中的BG-11商用培養基添加量之影響,經過15天的培養後,發現廢水中仍有約85%至99%的有機質移除率,以及6.52 ± 0.28 g/L的藻體濃度產出,顯示以微藻進行養豬廢水處理並不需額外添加營養物質來強化處理效果。
本研究的第二部分,乃藉由工程策略來提升廢水處理的效率及穩定性。本實驗分為三個部分,最適化操作策略、固定化載體添加以及整合策略應用。在操作策略的部分,在長期廢水處理的範疇上,最佳化的策略是使用置換90%體積的半批次操作且各個操作循環的培養天數為6天。在固定化載體添加的部分,雙載體(海綿與活性碳)之添加能提升豬廢水處理的效率且縮短各個操作循環的處理時間至5天。此外,雙載體更展示了優異的可重複利用性。在整合策略應用的部分,將半批次操作結合雙載體並提高廢水進料濃度,藉此使微藻豬廢水處理系統更經濟可行。實驗結果也顯示在整合策略操作下,各個處理循環的廢水進料濃度能成功地由50%提升至100%,並可得94%到99%的營養源移除效率,且處理後的放流水符合台灣養豬廢水排放標準(COD < 600 mg/L、BOD < 80 mg/L)。此外,在使用整合策略以及100%豬廢水進料的情況下,平均微藻藻體濃度及產率分別為4.36 ± 0.44 g/L與0.79 ± 0.10 g/L/d。
最後,基於前述實驗中得到的最佳工程策略及參數進行微藻豬廢水處理的規模放大操作。實驗結果成功顯示了在放大系統和模擬戶外光週期的條件下(光/暗循環為12小時/12小時),處理後放流水的性質仍然符合廢水排放標準。所得之COD、BOD、TN及TP的移除率分別為95.0 ± 0.8%、99.1 ± 0.1%、77.3 ± 2.6%和88.7 ± 2.2%。此外,放大系統同時也可獲得4.01 ± 0.97的平均藻體濃度以及0.39 ± 0.10 g/L/d的平均藻體產率。
以微藻進行養豬廢水處理,除了處理效果優異外,廢水處理後所得到的微藻藻體,也含有高蛋白質及高葉黃素含量,因此有極高的潛力能夠做為畜牧及水產飼料添加劑。大致上,微藻藻體中的蛋白質含量約為50%至60%,葉黃素則約為3.0 mg/g至5.0 mg/g。這些微藻中的高營養成分為微藻豬廢水處理提供了額外的利潤,且因為藻體的再利用,可大幅降低污泥的後續處理成本並避免造成二次污染。本研究建立的高效創新微藻廢水處理系統以及藻體的循環利用,不只實踐了循環經濟的理念,且讓整個廢水處理程序更為環保,彰顯了此微藻廢水處理系統具有未來實廠規模商業化應用及經濟可行性。
Piggery wastewater is rich in organic carbon, nitrogen and phosphorus, which could cause serious pollution and eutrophication if directly discharged into water bodies. Hence, proper treatment before environmental release is deemed essential. The nutrients in wastewater can be utilized by microalgae, which in turn makes it a suitable cultivation medium for microalgae. The resulting microalgal biomass with appropriate nutritional composition can be used as livestock and aquaculture feed supplements, providing additional profits for microalgae-based piggery wastewater treatment and preventing the secondary sludge pollution caused by conventional piggery wastewater treatment. The aim of this study is to evaluate the feasibility of growing indigenous microalgae with swine wastewater for simultaneous microalgal biomass production and wastewater treatment.
Unsterilized piggery wastewater was used to screen the best microalgal candidate for wastewater treatment and optimize the wastewater-based medium for microalgae cultivation. Chlorella sorokiniana AK-1 showed the best performance for nutrients removal as well as microalgal biomass production in BG-11 medium containing 10% piggery wastewater. Subsequently, optimal results were obtained by using BG-11 medium mixed with 50% wastewater for Chlorella sorokiniana AK-1 cultivation and wastewater treatment. Further, the addition of BG-11 medium nutrients was successfully eliminated with further examination for cost reduction, and 50% piggery wastewater could serve as the optimal medium. Under the optimal conditions, this microalgae-based system exhibited about 85% to 99% nutrients removal efficiencies for piggery wastewater treatment with a biomass production of 6.52 ± 0.28 g/L after 15 days cultivation.
The second part of this study was applying engineering strategies for the enhancement of wastewater treatment efficiency and stability. The experiments in the second part could be roughly categorized into three tasks; namely, operating strategy, solid carrier addition and integrated strategy. In operating strategy evaluation, the optimal strategy for long-term wastewater treatment was found to be using semi-batch operation with 90% volumetric replacement, and the cultivation time in each cycle was 6 days. For solid carrier addition, the addition of dual carriers (sponges and activated carbon) could enhance the efficiency of piggery wastewater treatment and reduce the treatment time to 5 days in each cycle. Moreover, the dual carriers also demonstrated great reusability. In integrated strategy, semi-batch operation was integrated with dual carriers with an increase in the wastewater loading to make the proposed microalgae-based piggery wastewater treatment more commercially feasible. The results show that, with the integrated strategies, wastewater loading in each cycle could be successfully increased from 50% to 100%. The resulting nutrients removal efficiencies were in the range of 94% to 99%, and characteristics of the treated effluent satisfied Taiwan Swine Wastewater Discharge Standards (COD < 600 mg/L, BOD < 80 mg/L). In addition, with integrated strategy and 100% piggery wastewater loading, the average biomass concentration was 4.36 ± 0.44 g/L and the average biomass productivity was 0.79 ± 0.10 g/L/d.
Finally, the scale-up process of microalgae-based piggery wastewater treatment applying the optimal engineering strategies obtained previously was performed. The results successfully revealed the effective piggery wastewater treatment under scale-up system in an indoor 10L open pond with simulated outdoor photoperiod (light/dark cycle 12h/12h). The treated effluent also met the wastewater discharge standards. The resulting COD, BOD, TN and TP removal efficiencies were 95.0 ± 0.8%, 99.1 ± 0.1%, 77.3 ± 2.6% and 88.7 ± 2.2%, respectively. Furthermore, the scale-up system simultaneously showed an average biomass concentration and productivity of 4.01 ± 0.97 g/L and 0.39 ± 0.10 g/L/d, respectively.
Apart from the remarkable results for piggery wastewater treatment, the microalgal biomass obtained after wastewater treatment revealed high potential to be evaluated as livestock feed supplement due to its high protein and lutein content. The resulting microalgal biomass generally contained protein in the range of 50% to 60% and lutein in the range of 3.0 mg/g to 5.0 mg/g. These high nutritional contents in microalgal biomass provide additional profits for microalgae-based piggery wastewater treatment and alleviate the secondary sludge disposal issues. The innovative system and outstanding performances in this study not only fulfill the concept of circular economy, making the process much more environmental-friendly, but also show that the microalgae-based piggery wastewater treating system is economically feasible for future plant-scale commercialization.
2006. Manuscript of Piggery Wastewater Recycling, (Ed.) T.C.o.A. Livestock Research Institute, Executive Yuan.
(FAO), T.F.a.A.O.o.t.U.N. 2018a. FAOSTAT : Amount excreted in manure (N content) by Swine, The Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/#home.
(FAO), T.F.a.A.O.o.t.U.N. 2018b. FAOSTAT : Production of Pigs in World, The Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/#home.
Abad, S., Turon, X. 2012. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. Biotechnology advances, 30(3), 733-741.
Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B. 2012. Microalgae and wastewater treatment. Saudi J Biol Sci, 19(3), 257-75.
Abe, K., Imamaki, A., Hirano, M. 2002. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepohlia aurea. Journal of Applied Phycology, 14(2), 129-134.
Abe, K., Matsumura, I., Imamaki, A., Hirano, M. 2003. Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga Trentepohlia aurea. World Journal of Microbiology and Biotechnology, 19(3), 325-328.
Abou-Shanab, R.A., Ji, M.K., Kim, H.C., Paeng, K.J., Jeon, B.H. 2013. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage, 115, 257-64.
Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J., Dragone, G. 2012. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol, 118, 61-6.
Akhtar, N., Iqbal, J., Iqbal, M. 2004. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater, 108(1-2), 85-94.
Aksu, Z. 2001. Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Separation and Purification Technology, 21(3), 285-294.
Alcántara, C., Posadas, E., Guieysse, B., Muñoz, R. 2015. Microalgae-based Wastewater Treatment. 439-455.
Alkhamis, Y., Qin, J.G. 2016. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures. Journal of applied phycology, 28(1), 35-42.
Amini Khoeyi, Z., Seyfabadi, J., Ramezanpour, Z. 2011. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41-49.
Andrade, M.R., Costa, J.A. 2007. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264(1-4), 130-134.
Apt, K.E., Behrens, P.W. 1999. Commercial developments in microalgal biotechnology. Journal of phycology, 35(2), 215-226.
AQUALYTIC®. 2017. Photometer System AL450 Instruction manual.
Aslan, S., Kapdan, I.K. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64-70.
Ayre, J.M., Moheimani, N.R., Borowitzka, M.A. 2017. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 24, 218-226.
Bailliez, C., Largeau, C., Casadevall, E. 1985. Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Applied microbiology and biotechnology, 23(2), 99-105.
Barsanti, L., Gualtieri, P. 2014. Algae: anatomy, biochemistry, and biotechnology. CRC press.
Batista, A.P., Gouveia, L., Bandarra, N.M., Franco, J.M., Raymundo, A. 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164-173.
Becker, E.W. 2007. Micro-algae as a source of protein. Biotechnol Adv, 25(2), 207-10.
Beuckels, A., Smolders, E., Muylaert, K. 2015. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res, 77, 98-106.
Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K. 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425-3431.
Borchardt, J.A., Azad, H.S. 1968. Biological extraction of nutrients. Journal (Water Pollution Control Federation), 1739-1754.
Borowitzka, M.A. 1997. Microalgae for aquaculture: opportunities and constraints. Journal of Applied Phycology, 9(5), 393.
Brennan, L., Owende, P. 2010. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14(2), 557-577.
Cai, T., Park, S.Y., Li, Y. 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
Cao, L., Zhou, T., Li, Z., Wang, J., Tang, J., Ruan, R., Liu, Y. 2018. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater. Bioresour Technol, 263, 10-16.
Ceron Garcia, M., Camacho, F.G., Mirón, A.S., Sevilla, J.F., Chisti, Y., Grima, E.M. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of microbiology and biotechnology, 16(5), 689.
Certik, M., Shimizu, S. 1999. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. Journal of bioscience and bioengineering, 87(1), 1-14.
Chan, M.-C., Ho, S.-H., Lee, D.-J., Chen, C.-Y., Huang, C.-C., Chang, J.-S. 2013. Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal, 78, 24-31.
Che, J., Wan, J., Huang, X., Wu, R., Liang, K. 2017. Pretreatment of piggery digestate wastewater by ferric-carbon micro-electrolysis under alkalescence condition. Korean Journal of Chemical Engineering, 34(9), 2397-2405.
Cheirsilp, B., Torpee, S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol, 110, 510-6.
Chen, B.Y., Chen, C.Y., Guo, W.Q., Chang, H.W., Chen, W.M., Lee, D.J., Huang, C.C., Ren, N.Q., Chang, J.S. 2014. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresour Technol, 160, 175-81.
Chen, C.Y., Chang, Y.H. 2018. Engineering strategies for enhancing C. vulgaris ESP-31 lipid production using effluents of coke-making wastewater. J Biosci Bioeng.
Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol, 102(1), 71-81.
Chen, F., Zhang, Y., Guo, S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18(5), 603-608.
Chen, Y.-C. 2003. Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. Journal of applied phycology, 15(5), 439-444.
Cheng, D.L., Ngo, H.H., Guo, W.S., Liu, Y.W., Zhou, J.L., Chang, S.W., Nguyen, D.D., Bui, X.T., Zhang, X.B. 2018. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci Total Environ, 621, 1664-1682.
Cheng, H., Tian, G., Liu, J. 2013. Enhancement of biomass productivity and nutrients removal from pretreated piggery wastewater by mixotrophic cultivation ofDesmodesmussp. CHX1. Desalination and Water Treatment, 51(37-39), 7004-7011.
Cheng, J., Liu, B. 2001. Nitrification/Denitrification in Intermittent Aeration Process for Swine Wastewater Treatment. Journal of Environmental Engineering, 127(8), 705-711.
Cheng, N., Lo, K.V., Yip, K.H. 2000. Swine wastewater treatment in a two stage sequencing batch reactor using real‐time control. Journal of Environmental Science and Health, Part B, 35(3), 379-398.
Cheng, P., Wang, Y., Liu, T., Liu, D. 2017a. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production. Front Plant Sci, 8, 1594.
Cheng, P., Wang, Y., Liu, T., Liu, D. 2017b. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production. Frontiers in Plant Science, 8.
Chevalier, P., de la Noüe, J. 1985. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme and microbial technology, 7(12), 621-624.
Chew, K.W., Chia, S.R., Show, P.L., Yap, Y.J., Ling, T.C., Chang, J.-S. 2018. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332-344.
Chew, K.W., Yap, J.Y., Show, P.L., Suan, N.H., Juan, J.C., Ling, T.C., Lee, D.J., Chang, J.S. 2017. Microalgae biorefinery: High value products perspectives. Bioresour Technol, 229, 53-62.
Chinnasamy, S., Bhatnagar, A., Hunt, R.W., Das, K.C. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol, 101(9), 3097-105.
Chiu, S.Y., Kao, C.Y., Chen, T.Y., Chang, Y.B., Kuo, C.M., Lin, C.S. 2015. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol, 184, 179-189.
Choi, H.J., Lee, S.M. 2015. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess and Biosystems Engineering, 38(4), 761-766.
Chojnacka, K., Marquez-Rocha, F.-J. 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3(1), 21-34.
Dai, Z., Wu, Z., Jia, S., Wu, G. 2014. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci, 964, 116-27.
Das, C., Ramaiah, N., Pereira, E., Naseera, K. 2018. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Int J Phytoremediation, 20(3), 284-292.
de-Bashan, L.E., Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol, 101(6), 1611-27.
de-Bashan, L.E., Moreno, M., Hernandez, J.-P., Bashan, Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36(12), 2941-2948.
de Godos, I., Arbib, Z., Lara, E., Rogalla, F. 2016. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate. Bioresour Technol, 220, 253-261.
de Godos, I., Gonzalez, C., Becares, E., Garcia-Encina, P.A., Munoz, R. 2009. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biotechnol, 82(1), 187-94.
Eixler, S., Karsten, U., Selig, U. 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia, 45(1), 53-60.
Ejike, C.E.C.C., Collins, S.A., Balasuriya, N., Swanson, A.K., Mason, B., Udenigwe, C.C. 2017. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, 30-36.
El-Kassas, H.Y., Mohamed, L.A. 2014. Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research, 40(3), 301-308.
Evans, M., Smith, M., Deans, E., Svoboda, I., Thacker, F. 1986. Nitrogen and aerobic treatment of slurry. Agricultural Wastes, 15(3), 205-213.
Feng, P., Deng, Z., Hu, Z., Fan, L. 2011. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresource technology, 102(22), 10577-10584.
Fernandes, T.V., Suarez-Munoz, M., Trebuch, L.M., Verbraak, P.J., Van de Waal, D.B. 2017. Toward an Ecologically Optimized N:P Recovery from Wastewater by Microalgae. Front Microbiol, 8, 1742.
Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J.-z., Liu, M., Cai, H.-w. 2016. Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61.
Garbisu, C., Gil, J.M., Bazin, M.J., Hall, D.O., Serra, J.L. 1991. Removal of nitrate from water by foam-immobilizedPhormidium laminosum in batch and continuous-flow bioreactors. Journal of applied phycology, 3(3), 221-234.
Garbisu, C., Hall, D.O., Serra, J.L. 1993. Removal of phosphate by foam‐immobilized Phormidium laminosum in batch and continuous‐flow bioreactors. Journal of Chemical Technology & Biotechnology, 57(2), 181-189.
Garcí, M.C., Sevilla, J.F., Fernández, F.A., Grima, E.M., Camacho, F.G. 2000. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. Journal of Applied Phycology, 12(3-5), 239-248.
Garnham, G.W., Codd, G.A., Gadd, G.M. 1992. Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environmental science & technology, 26(9), 1764-1770.
Ge, S., Champagne, P. 2016. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res, 88, 604-612.
Gil, J.M., Serra, J.L. 1993. Nitrate removal by immobilized cells of Phormidium uncinatum in batch culture and a continuous-flow photobioreactor. Applied microbiology and biotechnology, 39(6), 782-787.
Godos, I., Blanco, S., Garcia-Encina, P.A., Becares, E., Munoz, R. 2009a. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol, 100(19), 4332-9.
Godos, I.d., Blanco, S., García-Encina, P.A., Becares, E., Muñoz, R. 2009b. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresource Technology, 100, 4332-4339.
Gonçalves, A.L., Pires, J.C.M., Simões, M. 2017. A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-415.
Gonçalves, A.L., Simões, M., Pires, J.C.M. 2014. The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Conversion and Management, 85, 530-536.
Gonzalez, C., Marciniak, J., Villaverde, S., Garcia-Encina, P.A., Munoz, R. 2008. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Appl Microbiol Biotechnol, 80(5), 891-8.
Graziani, G., Schiavo, S., Nicolai, M.A., Buono, S., Fogliano, V., Pinto, G., Pollio, A. 2013. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food & Function, 4(1), 144-152.
Grobbelaar, J.U. 2011. Microalgae mass culture: the constraints of scaling-up. Journal of Applied Phycology, 24(3), 315-318.
Habibi, A., Nematzadeh, G.A., Shariati, F.P., Amrei, H.D., Teymouri, A. 2019. Effect of light/dark cycle on nitrate and phosphate removal from synthetic wastewater based on BG11 medium by Scenedesmus sp. 3 Biotech, 9(4), 150.
Hallier, U., Park, R. 1969. Photosynthetic light reactions in chemically fixed Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum. Plant physiology, 44(4), 535-539.
Hameed, M.A. 2006. Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris. African Journal of Biotechnology, 5(19).
Han, Z., Wu, W., Chen, Y., Zhu, J. 2007. Characteristics of a twice-fed sequencing batch reactor treating swine wastewater under control of aeration intensity. J Environ Sci Health A Tox Hazard Subst Environ Eng, 42(3), 361-70.
Hernandez, J.-P., de-Bashan, L.E., Bashan, Y. 2006. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 38(1-2), 190-198.
Ho, S.-H., Chan, M.-C., Liu, C.-C., Chen, C.-Y., Lee, W.-L., Lee, D.-J., Chang, J.-S. 2014a. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275-282.
Ho, S.H., Ye, X., Hasunuma, T., Chang, J.S., Kondo, A. 2014b. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review. Biotechnol Adv, 32(8), 1448-59.
Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., Jinpeng, L. 2011. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884-9890.
Hu, B., Min, M., Zhou, W., Li, Y., Mohr, M., Cheng, Y., Lei, H., Liu, Y., Lin, X., Chen, P., Ruan, R. 2012. Influence of Exogenous CO2 on Biomass and Lipid Accumulation of Microalgae Auxenochlorella protothecoides Cultivated in Concentrated Municipal Wastewater. Applied Biochemistry and Biotechnology, 166(7), 1661-1673.
Hu, J., Nagarajan, D., Zhang, Q., Chang, J.S., Lee, D.J. 2018. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv, 36(1), 54-67.
Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38-46.
Huang, H., Guo, G., Zhang, P., Zhang, D., Liu, J., Tang, S. 2017. Feasibility of physicochemical recovery of nutrients from swine wastewater: Evaluation of three kinds of magnesium sources. Journal of the Taiwan Institute of Chemical Engineers, 70, 209-218.
Huang, H., Zhang, D., Guo, G., Jiang, Y., Wang, M., Zhang, P., Li, J. 2018. Dolomite application for the removal of nutrients from synthetic swine wastewater by a novel combined electrochemical process. Chemical Engineering Journal, 335, 665-675.
Ip, P.-F., Wong, K.-H., Chen, F. 2004. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochemistry, 39(11), 1761-1766.
Jeanfils, J., Canisius, M.-F., Burlion, N. 1993. Effect of high nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. Journal of Applied Phycology, 5(3), 369-374.
Jia, Q., Xiang, W., Yang, F., Hu, Q., Tang, M., Chen, C., Wang, G., Dai, S., Wu, H., Wu, H. 2015. Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. Journal of Applied Phycology, 28(2), 727-736.
Johnson, M.B., Wen, Z. 2010. Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol, 85(3), 525-34.
Kaplan, D., Richmond, A., Dubinsky, Z., Aaronson, S. 1986. Algal nutrition. Handbook of microalgal mass culture, 147-198.
Khalid, A.A.H., Yaakob, Z., Abdullah, S.R.S., Takriff, M.S. 2019. Analysis of the elemental composition and uptake mechanism of Chlorella sorokiniana for nutrient removal in agricultural wastewater under optimized response surface methodology (RSM) conditions. Journal of Cleaner Production, 210, 673-686.
Kim, H.-C., Choi, W.J., Ryu, J.H., Maeng, S.K., Kim, H.S., Lee, B.-C., Song, K.G. 2014. Optimizing Cultivation Strategies for Robust Algal Growth and Consequent Removal of Inorganic Nutrients in Pretreated Livestock Effluent. Applied Biochemistry and Biotechnology, 174(4), 1668-1682.
Kim, S., Lee, Y., Hwang, S.-J. 2013a. Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. International Biodeterioration & Biodegradation, 85, 511-516.
Kim, S., Park, J.E., Cho, Y.B., Hwang, S.J. 2013b. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol, 144, 8-13.
Kim, S.K., Park, D.H., Song, S.H., Wee, Y.J., Jeong, G.T. 2013c. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioprocess Biosyst Eng, 36(6), 659-66.
Kishida, N., Kim, J.-H., Chen, M., Sasaki, H., Sudo, R. 2003. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. Journal of Bioscience and Bioengineering, 96(3), 285-290.
Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G., Oyler, G.A. 2013. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol, 150, 377-86.
Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H., Xia, C.-G. 2012. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 360-367.
Kornboonraksa, T., Lee, H.S., Lee, S.H., Chiemchaisri, C. 2009. Application of chemical precipitation and membrane bioreactor hybrid process for piggery wastewater treatment. Bioresour Technol, 100(6), 1963-8.
Kornboonraksa, T., Lee, S.H. 2009. Factors affecting the performance of membrane bioreactor for piggery wastewater treatment. Bioresour Technol, 100(12), 2926-32.
Kumar, K., Dasgupta, C.N., Das, D. 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour Technol, 167, 358-66.
Kumar, P., Prajapati, S.K., Malik, A., Vijay, V.K. 2017. Cultivation of native algal consortium in semi-continuous pilot scale raceway pond for greywater treatment coupled with potential methane production. Journal of Environmental Chemical Engineering, 5(6), 5581-5587.
Kundu, S., Mukherjee, J., Yeasmin, F., Basu, S., Chattopadhyay, J., Ray, S., Bhattacharya, S. 2018. Growth profile of Chaetoceros sp. and its steady state behaviour with change in initial inoculum size: a modelling approach. CURRENT SCIENCE, 115(12), 2275-2286.
Landrum, J.T., Bone, R.A. 2001. Lutein, zeaxanthin, and the macular pigment. Archives of biochemistry and biophysics, 385(1), 28-40.
Lau, P., Tam, N., Wong, Y. 1995. Effect of algal density on nutrient removal from primary settled wastewater. Environmental Pollution, 89(1), 59-66.
Lau, P., Tam, N., Wong, Y. 1998. Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresource technology, 63(2), 115-121.
Lavín, P.L., Lourenço, S.O. 2005. An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures. Brazilian Journal of Oceanography, 53(1-2), 55-68.
Lee, J.-C., Baek, K., Kim, H.-W. 2018. Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater. Journal of Cleaner Production, 180, 244-251.
Lee, S., Iamchaturapatr, J., Polprasert, C., Ahn, K. 2004. Application of chemical precipitation for piggery wastewater treatment. Water Science and Technology, 49(5-6), 381.
Li, X., Guo, J., Dong, R., Ahring, B.K., Zhang, W. 2016. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Science of the Total Environment, 544, 774-781.
Li, X., Xu, H., Wu, Q. 2007. Large‐scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors Biotechnology Bioengineering, 98(4), 764-771.
Li, Y., Chen, Y.F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol, 102(8), 5138-44.
Li, Y., Zhou, W., Hu, B., Min, M., Chen, P., Ruan, R.R. 2012. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering, 109(9), 2222-2229.
Li, Z., Haifeng, L., Zhang, Y., Shanshan, M., Baoming, L., Zhidan, L., Na, D., Minsheng, L., Buchun, S., Jianwen, L. 2017. Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater. International Journal of Agricultural and Biological Engineering, 10(2), 194-204.
Liang, Y., Sarkany, N., Cui, Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett, 31(7), 1043-9.
Lim, J.W., Seng, C.E., Lim, P.E., Ng, S.L., Sujari, A.N. 2011. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresour Technol, 102(21), 9876-83.
Limoli, A., Langone, M., Andreottola, G. 2016. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process. J Environ Manage, 176, 1-10.
Liu, J., Chen, F. 2014. Biology and industrial applications of Chlorella: advances and prospects. in: Microalgae biotechnology, Springer, pp. 1-35.
Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H.Q., Munoz, R., Rittmann, B. 2017. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresour Technol, 241, 1127-1137.
Liu, K., Li, J., Qiao, H., Lin, A., Wang, G. 2012. Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol, 114, 26-32.
Lizzul, A.M., Hellier, P., Purton, S., Baganz, F., Ladommatos, N., Campos, L. 2014. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour Technol, 151, 12-8.
Lodi, A., Binaghi, L., De Faveri, D., Carvalho, J.C.M., Converti, A., Del Borghi, M. 2005a. Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophycea) with carbon source pulse feeding. Annals of Microbiology, 55(3), 181-185.
Lodi, A., Binaghi, L., De Faveri, D., Carvalho, J.C.M., Converti, A., Del Borghi, M. 2005b. Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophycea) with carbon source pulse feeding. Annals of microbiology.
Loladze, I., Elser, J.J. 2011. The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14(3), 244-250.
Lu, S., Wang, J., Niu, Y., Yang, J., Zhou, J., Yuan, Y. 2012. Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol Bioeng, 109(7), 1651-62.
Lukavský, J. 1988. Long-term preservation of algal strains by immobilization. Archiv für Protistenkunde, 135(1-4), 65-68.
Mallick, N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. biometals, 15(4), 377-390.
Mallick, N., Rai, L. 1994. Removal of inorganic ions from wastewaters by immobilized microalgae. World Journal of Microbiology and Biotechnology, 10(4), 439-443.
Martinez, M., Jimenez, J., El Yousfi, F. 1999. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresource Technology, 67(3), 233-240.
Martínez, M.E., Camacho, F., Jiménez, J., Espinola, J. 1997. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochemistry, 32(2), 93-98.
Mata, T.M., Martins, A.A., Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.
McGinn, P.J., Dickinson, K.E., Park, K.C., Whitney, C.G., MacQuarrie, S.P., Black, F.J., Frigon, J.-C., Guiot, S.R., O'Leary, S.J.B. 2012. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research, 1(2), 155-165.
Meng, J., Li, J., Li, J., Antwi, P., Deng, K., Wang, C., Buelna, G. 2015. Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Bioresour Technol, 198, 884-90.
Miranda, A.F., Ramkumar, N., Andriotis, C., Höltkemeier, T., Yasmin, A., Rochfort, S., Wlodkowic, D., Morrison, P., Roddick, F., Spangenberg, G., Lal, B., Subudhi, S., Mouradov, A. 2017a. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnology for Biofuels, 10.
Miranda, A.F., Ramkumar, N., Andriotis, C., Holtkemeier, T., Yasmin, A., Rochfort, S., Wlodkowic, D., Morrison, P., Roddick, F., Spangenberg, G., Lal, B., Subudhi, S., Mouradov, A. 2017b. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels, 10, 120.
Mohd-Sahib, A.A., Lim, J.W., Lam, M.K., Uemura, Y., Isa, M.H., Ho, C.D., Kutty, S.R.M., Wong, C.Y., Rosli, S.S. 2017. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material. Bioresour Technol, 239, 127-136.
Mohd Udaiyappan, A.F., Abu Hasan, H., Takriff, M.S., Sheikh Abdullah, S.R. 2017. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8-21.
Morales-Sánchez, D., Martinez-Rodriguez, O.A., Kyndt, J., Martinez, A. 2015. Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1-9.
Moreno-Garrido, I. 2008. Microalgae immobilization: current techniques and uses. Bioresour Technol, 99(10), 3949-64.
Mujtaba, G., Rizwan, M., Kim, G., Lee, K. 2018. Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chemical Engineering Journal, 343, 155-162.
Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology, 12(3-5), 527-534.
Nagarajan, D., Kusmayadi, A., Yen, H.W., Dong, C.D., Lee, D.J., Chang, J.S. 2019. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresour Technol, 121718.
Ni, Z.Y., Li, J.Y., Xiong, Z.Z., Cheng, L.H., Xu, X.H. 2018. Role of granular activated carbon in the microalgal cultivation from bacteria contamination. Bioresour Technol, 247, 36-43.
Obaja, D., Mace, S., Mata-Alvarez, J. 2005. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater. Bioresour Technol, 96(1), 7-14.
Ogbonna, J.C., Tanaka, H. 1998. Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: A method of achieving continuous cell growth under light/dark cycles. Bioresource Technology, 65(1), 65-72.
Ogbonna, J.C., Tomiyama, S., Tanaka, H. 1999. Production of α-tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis. in: Progress in Industrial Microbiology, (Eds.) R. Osinga, J. Tramper, J.G. Burgess, R.H. Wijffels, Vol. 35, Elsevier, pp. 213-221.
Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., Lee, T. 2017. Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresour Technol, 234, 432-438.
Pena-Castro, J.M., Martinez-Jeronimo, F., Esparza-Garcia, F., Canizares-Villanueva, R.O. 2004. Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresour Technol, 94(2), 219-22.
Perez-Garcia, O., Escalante, F.M., de-Bashan, L.E., Bashan, Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res, 45(1), 11-36.
Picardo, M.C., de Medeiros, J.L., Araújo, O.d.Q.F., Chaloub, R.M. 2013. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresource Technology, 143, 242-250.
Posten, C. 2009. Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177.
Powell, N., Shilton, A., Chisti, Y., Pratt, S. 2009. Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics. Water Res, 43(17), 4207-13.
Powell, N., Shilton, A.N., Pratt, S., Chisti, Y. 2008. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environmental science & technology, 42(16), 5958-5962.
Praveen, P., Heng, J.Y.P., Loh, K.-C. 2016. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration. Bioresource Technology, 222, 448-457.
Praveen, P., Loh, K.C. 2019. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle. Appl Microbiol Biotechnol, 103(8), 3571-3580.
Ramanna, L., Guldhe, A., Rawat, I., Bux, F. 2014. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol, 168, 127-35.
Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F. 2011. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411-3424.
Razzak, S.A., Ali, S.A.M., Hossain, M.M., deLasa, H. 2017. Biological CO 2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76, 379-390.
Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S., de Lasa, H. 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 27, 622-653.
Redfield, A.C. 1958. The biological control of chemical factors in the environment. American scientist, 46(3), 230A-221.
Reynolds Jr, M.R., Stoumbos, Z.G. 2006. Comparisons of some exponentially weighted moving average control charts for monitoring the process mean and variance. Technometrics, 48(4), 550-567.
Rezvani, F., Sarrafzadeh, M.H., Seo, S.H., Oh, H.M. 2018. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production. Environ Sci Pollut Res Int, 25(27), 27471-27482.
Richmond, A. 2004. Handbook of microalgal culture: biotechnology and applied phycology. Wiley Online Library.
Robinson, P., Dainty, A., Goulding, K., Simpkins, I., Trevan, M. 1985. Physiology of alginate-immobilized Chlorella. Enzyme and microbial technology, 7(5), 212-216.
Robinson, P., Reeve, J., Goulding, K. 1988. Kinetics of phosphorus uptake by immobilizedChlorella. Biotechnology letters, 10(1), 17-20.
Rugnini, L., Costa, G., Congestri, R., Antonaroli, S., Sanita di Toppi, L., Bruno, L. 2018. Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: An integrated approach. Plant Physiol Biochem, 125, 45-51.
Ruiz-Marin, A., Mendoza-Espinosa, L. 2008. Ammonia removal and biomass characteristics of alginate-immobilized Scenedesmus obliquus cultures treating real wastewater. Fresenius Environ. Bull, 17(9a), 1236-1241.
Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol, 101(1), 58-64.
Sahib, A.A.M., Lim, J.W., Lam, M.K., Uemura, Y., Kutty, S.R.M., Ramli, A. 2018. Optimization of polyurethane foam cube in enhancing the attachment of microalgae biomass. Journal of Fundamental and Applied Sciences, 9(6S), 642.
Sakar, S., Yetilmezsoy, K., Kocak, E. 2009. Anaerobic digestion technology in poultry and livestock waste treatment--a literature review. Waste Manag Res, 27(1), 3-18.
Salati, S., D'Imporzano, G., Menin, B., Veronesi, D., Scaglia, B., Abbruscato, P., Mariani, P., Adani, F. 2017. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour Technol, 230, 82-89.
Sawayama, S., Rao, K., Hall, D. 1998. Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Applied microbiology and biotechnology, 49(4), 463-468.
Sayre, R. 2010. Microalgae: The Potential for Carbon Capture. BioScience, 60(9), 722-727.
Shi, X.-M., Chen, F., Yuan, J.-P., Chen, H. 1997. Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology, 9(5), 445-450.
Shin, J.-H., Lee, S.-M., Jung, J.-Y., Chung, Y.-C., Noh, S.-H. 2005. Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor (MBR) and anaerobic upflow bed filter (AUBF) reactor. Process Biochemistry, 40(12), 3769-3776.
Shipin, O.V., Lee, S.H., Chiemchaisri, C., Wiwattanakom, W., Ghosh, G.C., Anceno, A.J., Stevens, W.F. 2007. Piggery wastewater treatment in a tropical climate: biological and chemical treatment options. Environ Technol, 28(3), 329-37.
Shriwastav, A., Gupta, S.K., Ansari, F.A., Rawat, I., Bux, F. 2014. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol, 174, 60-6.
Shu, C.-H., Tsai, C.-C. 2016. Enhancing oil accumulation of a mixed culture of Chlorella sp. and Saccharomyces cerevisiae using fish waste hydrolysate. Journal of the Taiwan Institute of Chemical Engineers, 67, 377-384.
Sánchez, S., Martínez, M., Espejo, M., Pacheco, R., Espinola, F., Hodaifa, G. 2001. Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium. Journal of applied phycology, 13(5), 443-449.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. J Biosci Bioeng, 101(2), 87-96.
Stahel, W.R. 2016. The circular economy. Nature News, 531(7595), 435.
Sturm, B.S.M., Lamer, S.L. 2011. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Applied Energy, 88, 3499-3506.
Sui, Q., Jiang, C., Yu, D., Chen, M., Zhang, J., Wang, Y., Wei, Y. 2018. Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater. J Hazard Mater, 342, 210-219.
Suzuki, T., Yamaguchi, T., Ishida, M. 1998. Immobilization of Prototheca zopfü in calcium-alginate beads for the degradation of hydrocarbons. Process Biochemistry, 33(5), 541-546.
Sydney, E.B., Novak, A.C., de Carvalho, J.C., Soccol, C.R. 2014. Chapter 4 - Respirometric Balance and Carbon Fixation of Industrially Important Algae. in: Biofuels from Algae, (Eds.) A. Pandey, D.-J. Lee, Y. Chisti, C.R. Soccol, Elsevier. Amsterdam, pp. 67-84.
Szarka, A., Kiadó, T. 2014. Basic Biochemistry.
Tajes-Martinez, P., Beceiro-Gonzalez, E., Muniategui-Lorenzo, S., Prada-Rodriguez, D. 2006. Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation. Talanta, 68(5), 1489-1496.
Tam, N.F., Wong, Y.-S. 1997. Wastewater treatment with algae. Springer.
Tampion, J., Tampion, M. 1987. Immobilized cells: principles and applications. Cambridge University Press.
Tang, H., Chen, M., Ng, K.Y., Salley, S.O. 2012. Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng, 109(10), 2468-74.
Tchobanoglous, G., Burton, F.L., Stensel, H.D. 2003. Wastewater engineering treatment and reuse. Boston, US: McGraw-Hill Higher Education.
Travieso, L., Benitez, F., Weiland, P., Sanchez, E., Dupeyron, R., Dominguez, A. 1996. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresource Technology, 55(3), 181-186.
Udaiyappan, A.F.M., Hasan, H.A., Takriff, M.S., Abdullah, S.R.S. 2017. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8-21.
Ueno, R., Wada, S., Urano, N. 2007. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Canadian journal of microbiology, 54(1), 66-70.
Urrutia, I., Serra, J.L., Llama, M.J. 1995. Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme and Microbial Technology, 17(3), 200-205.
Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A., Betenbaugh, M.J., Nie, Z., Qiu, G. 2011. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835-844.
Wang, H., Xiong, H., Hui, Z., Zeng, X. 2012. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol, 104, 215-20.
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol, 162(4), 1174-86.
Wang, M., Kuo-Dahab, W.C., Dolan, S., Park, C. 2014. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol, 154, 131-7.
Wang, Y., Guo, W., Yen, H.W., Ho, S.H., Lo, Y.C., Cheng, C.L., Ren, N., Chang, J.S. 2015. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol, 198, 619-25.
Wang, Y., Ho, S.-H., Cheng, C.-L., Nagarajan, D., Guo, W.-Q., Lin, C., Li, S., Ren, N., Chang, J.-S. 2017. Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7-14.
Wen, Z.-Y., Chen, F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology advances, 21(4), 273-294.
Whitton, R., Le Mevel, A., Pidou, M., Ometto, F., Villa, R., Jefferson, B. 2016. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res, 91, 371-8.
Wu, D., Zheng, S., Ding, A., Sun, G., Yang, M. 2015. Performance of a zero valent iron-based anaerobic system in swine wastewater treatment. J Hazard Mater, 286, 1-6.
Wu, Z.-Y., Shi, C.-L., Shi, X.-M. 2007. Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World Journal of Microbiology and Biotechnology, 23(9), 1233-1238.
Xin, L., Hong-Ying, H., Jia, Y. 2010. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. N Biotechnol, 27(1), 59-63.
Xu, J., Zhao, Y., Zhao, G., Zhang, H. 2015a. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol, 99(15), 6493-501.
Xu, J., Zhao, Y., Zhao, G., Zhang, H. 2015b. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Applied Microbiology and Biotechnology, 99(15), 6493-6501.
Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M.S. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research, 21(1), 6.
Yamaguchi, K. 1996. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. Journal of applied phycology, 8(6), 487-502.
Yamaguchi, T., Ishida, M., Suzuki, T. 1999. An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochemistry, 34(2), 167-171.
Yeh, M.-S., Wei, Y.-H., Chang, J.-S. 2005. Enhanced Production of Surfactin from Bacillussubtilis by Addition of Solid Carriers. Biotechnology Progress, 21(4), 1329-1334.
Zhan, J., Rong, J., Wang, Q. 2017. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505-8517.
Zhang, S., Lim, C.Y., Chen, C.L., Liu, H., Wang, J.Y. 2014. Urban nutrient recovery from fresh human urine through cultivation of Chlorella sorokiniana. J Environ Manage, 145, 129-36.
Zhang, X., Chen, X., Zhang, C., Wen, H., Guo, W., Ngo, H.H. 2016. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor. Bioresour Technol, 219, 762-767.
Zhang, X., Shi, X., Chen, F. 1999. A kinetic model for lutein production by the green microalga Chlorella protothecoides in heterotrophic culture. Journal of Industrial Microbiology and Biotechnology, 23(6), 503-507.
Zhang, X., Song, Z., Guo, W., Lu, Y., Qi, L., Wen, H., Ngo, H.H. 2017. Behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor. Bioresour Technol, 245(Pt A), 1282-1285.
Zhao, B., Li, J., Leu, S.Y. 2014. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community. Bioresour Technol, 173, 384-391.
Zhao, Z., Zhang, Y., Woodard, T.L., Nevin, K.P., Lovley, D.R. 2015. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol, 191, 140-5.
Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P., Ruan, R. 2012a. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110, 448-455.
Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P., Ruan, R. 2012b. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol, 110, 448-55.
Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., Yuan, Z. 2013. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res, 47(13), 4294-302.
Zhu, Q., Guo, S., Guo, C., Dai, D., Jiao, X., Ma, T., Chen, J. 2014. Stability of Fe–C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater. Chemical Engineering Journal, 255, 535-540.