簡易檢索 / 詳目顯示

研究生: 葉宇軒
Ye, Yu-Xuan
論文名稱: RC剪力牆於雙軸位移之行為模擬與分析
Simulation and Analysis of RC shear walls subjected to bi-axial loading
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: RC剪力牆雙軸位移有效翼板寬度有限元素模型
外文關鍵詞: RC Shear Walls, Biaxial Displacement, Effective Flange Width, The Finite Element Analysis
相關次數: 點閱:160下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RC剪力牆因其可提供良好的側向強度及勁度,於現今已被廣泛運用於耐震結構中,現行規範中的剪力牆忽略了弱軸方向行為對強軸行為的影響,然而當剪力牆承受實際地震反應時,並非由單一軸向所控制,因此對於剪力牆受雙軸向位移影響下的耐震能力分析,需有更進一步的探討。與矩形斷面剪力牆相較之下,T型斷面剪力牆在強軸方向之強度及勁度可獲得提升,同時翼板亦可承受弱軸方向側向力,然而,現行規範對於T型牆有效翼板寬度並無確切建議。本研究利用有限元素軟體LSDYNA,針對矩形牆與T型牆進行雙軸向位移載重的分析,搭配不同高寬比、軸壓比及斷面尺寸,觀察弱軸位移變化於強軸方向抗震能力的影響,及T型牆有效翼寬的變化。結果顯示,於矩形牆而言,雙軸位移對於低矮牆影響較為顯著,弱軸位移的提升,使其各項耐震能力明顯衰退,而軸壓的提升加劇了前述衰退幅度。於T型牆而言,雙軸位移於翼板受拉時影響較大,強度主要於弱軸向1到10個位移韌性比間衰退,而翼板的寬度及厚度增加使得衰退幅度減緩。有效翼寬亦有隨弱軸衰退的情形,隨軸壓比提升及翼板厚度增加皆使有效翼寬下降,而有效翼寬隨翼板寬度提升而增加,大部分規範皆高估了有效翼寬,取值過大嚴重高估T型撓曲強度。

    The current design specification of shear walls ignores the effect of lateral forces from the weak axis of shear walls. However, the actual seismic responses of shear walls are not controlled by the lateral force from a single direction. Therefore, the behaviour of shear walls subjected to biaxial displacement need to be further explored. Compared with the rectangular shear wall, the T-shaped shear wall has the better lateral strength and stiffness. However, the current specification for the effective flange width of T-shaped wall doesn’t have the exact proposal. In this study, the finite element software LSDYNA is used to analyse the rectangular wall and the T-shaped wall subjected to biaxial displacement. According to the results, for the rectangular wall, the biaxial displacement has a significant effect on the low wall. When the weak axis displacements improve, the seismic indexes decline. The increase of the axial load exacerbates the above-mentioned recession. For the T-shaped wall, the biaxial displacement has a significant effect on seismic indexes for the flange in tension. The recessions are mainly in the ductility ratio of weak axis 1 to 10. The increase of flange width and flange thickness slows down the recessions. The effective flange width also decline when the displacement of weak axis increase. The increase of the axial load and the flange thickness decline the effective flange width. And the increase of the flange width improves the effective flange width. Most of the specifications are overestimated the effective flange width.

    目錄 摘要 I 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第1章 緒論 1 1.1. 研究動機 1 1.2. 研究目的 2 1.3. 研究方法 2 1.4. 論文架構 2 第2章 文獻回顧 4 2.1. 矩形牆雙軸位移試驗 4 2.2. 非矩形牆雙軸位移試驗 9 2.3. 剪力遲滯(Shear lag)效應 21 2.4. 有效翼板寬度 22 第3章 分析架構 25 3.1. LS-DYNA軟體介紹 25 3.2. 模型建立 25 3.3. 材料模型 27 3.4. 網格切割與載重方式 31 3.5. 有限元素模型驗證 32 第4章 矩形牆分析結果 35 4.1. 雙軸加載方式 35 4.2. 矩形牆參數介紹 36 4.3. 力量-位移曲線 39 4.3.1. 極限強度 42 4.3.2. 勁度 47 4.4. 彎矩強度 50 第5章 T型牆分析結果 53 5.1. 雙軸加載方式 53 5.2. T型牆參數介紹 53 5.3. 力量-位移曲線 57 5.3.1. 極限強度 60 5.3.2. 勁度 66 5.4. 彎矩強度 69 5.5. 有效翼板寬度 73 第6章 結論 79 參考文獻 81

    史庆轩, 王斌, 王朋, & 田建勃. (2014). T 形截面 RC 剪力墙双向抗震性能对比分析. 西安建筑科技大学学报 (自然科学版), 46(2).
    史庆轩, 王斌, 郑晓龙, & 田建勃. (2014). T 形截面带翼缘剪力墙剪滞效应分析及有效翼缘宽度讨论. 建筑结构, 44(22), 67-71.
    郑星, 沙庆, & 仲崇霖. (2015). 钢筋混凝土带翼缘剪力墙承载力计算分析. 山西建筑, 41(24), 52-53.
    洪崇展, 曾柏庭, 游文吉, & 黃忠良. (2011). 使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性. 結構工程, 26(4), 3-16.
    洪崇展, 盧威廷, & 鄭宇翔. "耦合結構牆性能化抗震設計法." 結構工程 32.1 (2017): 49-70.
    洪崇展, & 盧威廷. (2014). 複合耦合結構牆抗震系統之設計與非線性側推分析. 結構工程, 29(3), 40-58.
    洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
    曾昱. (2016). 中低型鋼筋混凝土結構牆性能化設計參數之研究. 成功大學土木工程學系碩士學位論文.
    ACI Committee 318. (2015). Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), an ACI Report. American Concrete Institute.
    BAHTIAR, T. A., & KUSUNOKI, K. (2013). EXPERIMENTAL STUDY OF EFFECTIVE FLANGE WIDTH ON SYMMETRICAL CROSS-SECTION WALLS. Bulletin of the International Institute of Seismology and Earthquake Engineering, 47, 85-90.
    Beyer, K., Dazio, A., & Priestley, M. J. N. (2008). Quasi-static cyclic tests of two U-shaped reinforced concrete walls. Journal of Earthquake Engineering, 12(7), 1023-1053.
    Beyer, K., Hube, M., Constantin, R., Niroomandi, A., Pampanin, S., Dhakal, R., ... & Wallace, J. W. (2017). Reinforced concrete wall response under uni-and bi-directional loading. In Proceedings of the 16th World Conference on Earthquake Engineering (No. EPFL-CONF-224465).
    BHARTI, V., & AKHTAR, S. THE EFFECT OF FLANGE THICKNESS ON THE BEHAVIOUR OF DIFFERENT TYPES OF FLANGED SHEAR WALL.
    Brueggen, B. L., French, C. E., & Sritharan, S. (2017). T-Shaped RC Structural Walls Subjected to Multidirectional Loading: Test Results and Design Recommendations. Journal of Structural Engineering, 143(7), 04017040.
    Choi, C. S., Ha, S. S., Lee, L. H., Oh, Y. H., & Yun, H. D. (2004). Evaluation of deformation capacity for RC T-shaped cantilever walls. Journal of earthquake engineering, 8(03), 397-414.
    Code, U. B. (1997). UBC. 1997. In International Conference of Building Officials(Vol. 2).

    Constantin, R. T. (2016). Seismic behaviour and analysis of U-shaped RC walls.
    Foster, S. J., & Attard, M. M. (2001). Strength and ductility of fiber-reinforced high-strength concrete columns. Journal of Structural Engineering, 127(1), 28-34.
    Hasnalbant, M., & Eyyubov, C. The Effects of Cross Sectional Dimensions on the Behavior of L-Shaped RC Structural Members.
    Hassan, M., & El-Tawil, S. (2003). Tension flange effective width in reinforced concrete shear walls. Structural Journal, 100(3), 349-356.
    Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and Building Materials, 111, 408-418.
    Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
    Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).
    Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.

    Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    Hung C.-C., Li S.-H..(2013) Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites. Composites Part B: Engineering. 45, pp.1441-1447.
    Hung, C. C., & Lu, W. T. (2017). A performance-based design method for coupled wall structures. Journal of Earthquake Engineering, 21(4), 579-603.
    Hung, C. C., & Lu, W. T. (2017). Tall Hybrid Coupled Structural Walls: Seismic Behavior and Design Suggestions. International Journal of Civil Engineering, 1-16.
    Hung, C. C., & Lu, W. T. (2015). Towards achieving the desired seismic performance for hybrid coupled structural walls. Earthquakes and Structures, 9(6), 1251-1272.
    Hung, C. C. (2012). Modified full operator hybrid simulation algorithm and its application to the seismic response simulation of a composite coupled wall system. Journal of Earthquake Engineering, 16(6), 759-776.
    Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.

    Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
    Hung C.-C., Su Y.-F., Su Y.-M..(2017) Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials.Composites Part B: Engineering.
    Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
    Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
    Hung, C. C., & Yau, W. G. (2014). Behavior of scoured bridge piers subjected to flood-induced loads. Engineering Structures, 80, 241-250.
    Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
    Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
    Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    Ile, N., & Reynouard, J. M. (2005). Behaviour of U-shaped walls subjected to uniaxial and biaxial cyclic lateral loading. Journal of Earthquake Engineering, 9(01), 67-94.
    Kabeyasawa, T., Kato, S., Sato, M., Kabeyasawa, T., Fukuyama, H., Tani, M., ... & Hosokawa, Y. (2014, July). Effects of bi-directional lateral loading on the strength and deformability of reinforced concrete walls with/without boundary columns. In Proceedings of the 10th US National Congress on Earthquake Engineering.
    Key, S. W., Biffle, J. H., & Krieg, R. D. (1976). Study of the computational and theoretical differences of two finite strain elastic--plastic constitutive models(No. SAND-76-5428; CONF-760812-1). Sandia Labs., Albuquerque, N. Mex.(USA).
    Khatami, S. M., & Kheyroddin, A. (2011). The effect of flange thickness on the behavior of flanged-section shear walls. Procedia Engineering, 14, 2994-3000.
    Kwan, A. K. H. (1996). Shear lag in shear/core walls. Journal of Structural Engineering, 122(9), 1097-1104.
    Liu, C., Wei, X., Ni, X., & He, G. (2017). Research on Shear Lag Effect of T-shaped Short-leg Shear Wall. Periodica Polytechnica. Civil Engineering, 61(3), 602.
    Murray, Y. D. (2007). Users manual for LS-DYNA concrete material model 159(No. FHWA-HRT-05-062).

    Niroomandi, A., Pampanin, S., Dhakal, R. P., & Ashtiani, M. S. (2016). Finite element analysis of RC rectangular shear walls under bi-directional loading. In The New Zealand Society for Earthquake Engineering (NZSEE) Annual Technical Conference.
    Priestley, M. J. N. (2003). Revisiting myths and fallacies in earthquake engineering. The Ninth Mallet-Milne Lecture organized by The Society for Earthquake and Civil Engineering Dynamics.
    SEAOC Seismology Committee. (2006). SEAOC Blue Book: Seismic Design Recommendations.
    Shi, Q. X., & Wang, B. (2016). Simplified calculation of effective flange width for shear walls with flange. The Structural Design of Tall and Special Buildings, 25(12), 558-577.
    Tatsuya, I. M. A. N. I. S. H. I. (1996). Post-yield behaviours of multi-story reinforced concrete shear walls subjected to bilateral deformations under axial loading. In Proceedings of the 11th World Conference on Earthquake Engineering.
    Thomsen IV, J. H., & Wallace, J. W. (2004). Displacement-based design of slender reinforced concrete structural walls—experimental verification. Journal of Structural Engineering, 130(4), 618-630.
    Wallace, J. W. (1996). Evaluation of UBC-94 provisions for seismic design of RC structural walls. Earthquake Spectra, 12(2), 327-348.

    ZHANG, Z., & LI, B. (2013, September). OUT-OF-PLANE REATION OF RC STRUCTURAL WALLS IN NON-PRINCIPAL BENDING DIRECTIONS. In Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13) (pp. C-1). The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13).
    Zhang, Z., & Li, B. (2016). Seismic performance assessment of slender T-shaped reinforced concrete walls. Journal of Earthquake Engineering, 20(8), 1342-1369.
    Zhang, Z., & Li, B. (2017). Seismic behaviour of non-rectangular structural RC wall in the weak axis. Magazine of Concrete Research, 69(12), 606-617.
    Zhang, Z., & Li, B. (2017). Shear lag effect in tension flange of RC walls with flanged sections. Engineering Structures, 143, 64-76.

    下載圖示 校內:2022-07-31公開
    校外:2022-07-31公開
    QR CODE