簡易檢索 / 詳目顯示

研究生: 楊凱廸
Yang, Kai-Di
論文名稱: 透過電腦輔助設計藥物用以阻斷介白素-6 與醣蛋白130 之間的蛋白質交互作用
In Silico Design of Drugs for Blocking GP130/IL-6 Interaction
指導教授: 楊士德
Yang, Hsih-Te
共同指導教授: 洪欣儀
Hong, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 37
中文關鍵詞: 基於片段的藥物設計蛋白質交互作用介白素-6/醣蛋白130
外文關鍵詞: protein-protein interaction, fragment-based drug design, IL-6/GP130
相關次數: 點閱:155下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質之間的交互作用(PPIs)在細胞的生理功能上扮演一個重要的角色,它們的失調往往成為各種疾病的誘因。因此,針對蛋白質交互作用設計藥物做為治療疾病的策略,吸引了很多科學家的目光。介白素-6(IL-6)/醣蛋白130(GP130)/STAT3生物途徑的啟動對於類風濕性關節炎、前列腺癌、乳癌等癌症的發展相當重要。
    在本論文中,我們設計了一個流程用來建立虛擬化合物庫,這些化合物是針對IL-6與受體GP130交互作用的介面使用基於片段的藥物設計(FBDD)重新創造的,用來阻斷這些交互作用,進而治療與此生物途徑相關的疾病。由於透過基於片段的藥物設計創造出來的化合物常常被認為是難以實際合成的,開發相應的化學合成途徑需要大量的成本,儘管合成出來也不能保證其是否具有生物活性,因此我們在各大化合物資料庫中尋找結構與我們創造的虛擬化合物相似、被記錄有生物活性的化合物做為間接的驗證或是藥物的重新定位。這些虛擬化合物的可合成性分數(SA score)也會被標註上去做為參考。未來如果生物測定的結果證實這些結構相似的藥物確實有生物活性,我們創造的這些虛擬化合物可以開始進行後續的修飾,其可合成性分數可以做為是否要進行實際合成的參考。

    Protein-protein interactions (PPIs) play an important role in physiological function of living cells. Their dysregulation can cause numerous diseases. Therefore, modulating PPIs had attracted considerable attention for designing drugs for some years.
    The triggering of IL-6/GP130/STAT3 pathway, which results in multiple oncogene transcriptions, is critical for progression of multiple types of cancers such like prostate cancer and breast cancer. In this thesis, we reported a workflow to build a library of de novo virtual compounds, which are designed from beginning on the IL-6 /GP130 interface, using fragment-based approach. Since virtual compounds designed from fragment-based approach are usually considered hard to synthesize, similarity search of virtual hit on compound databases is performed for indirect validation and drug repositioning. Synthetic accessibility score (SA score) of each compound is calculated for annotation. If further bioassays performed with drugs identified by drug repositioning show any active result, these virtual compound will be optimized and SA score of each will be taken as reference of synthesis.

    摘要 i ABSTRACT ii 誌謝 iii LIST OF TABLES vi LIST OF FIGURES vii CHAPTER1 INTRODUCTION 1 1.1 Protein-protein interaction 1 1.2 Target 4 1.3 Fragment-based drug discovery 7 1.4 Objective 9 CHAPTER2 METHOD AND MATERIAL 10 2.1 Workflow 10 2.2 Analyze and define binding sites on receptor 11 2.2.1 Prepare protein 11 2.2.2 Analyze protein interface 11 2.2.3 Define binding sites 15 2.3 Preprocess fragments and place the first fragment 17 2.3.1 Generate fragment pools for each site 17 2.3.2 Dock fragments 17 2.3.3 Find overlapping poses between CDOCKER and MCSS 19 2.4 Grow fragments and generate a virtual compound library 19 2.4.1 Grow fragments as virtual compounds 19 2.4.2 Filtering and screening the compound library 21 2.5 Annotation of bioactivity and drug repositioning 23 CHAPTER3 EXPERIMENT AND RESULT 24 3.1 Reproducing 24 3.2 Discovery of new compounds 26 CHAPTER4 CONCLUSION AND DISCUSSION 30 REFERENCES 34

    [1] R. B. Corley, "Detection and Analysis of Proteins," A Guide to Methods in the Biomedical Sciences, pp. 1-24, 2005.
    [2] F. F. Delgado, N. Cermak, V. C. Hecht, S. Son, Y. Li, S. M. Knudsen, et al., "Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells," PloS one, vol. 8, p. e67590, 2013.
    [3] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, "A comprehensive two-hybrid analysis to explore the yeast protein interactome," Proceedings of the National Academy of Sciences, vol. 98, pp. 4569-4574, 2001.
    [4] T. L. Nero, C. J. Morton, J. K. Holien, J. Wielens, and M. W. Parker, "Oncogenic protein interfaces: small molecules, big challenges," Nature reviews Cancer, vol. 14, pp. 248-262, 2014.
    [5] B. O. Villoutreix, M. A. Kuenemann, J. L. Poyet, H. Bruzzoni‐Giovanelli, C. Labbé, D. Lagorce, et al., "Drug‐Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology," Molecular informatics, vol. 33, pp. 414-437, 2014.
    [6] B. Gautier, M. A. Miteva, V. Goncalves, F. Huguenot, P. Coric, S. Bouaziz, et al., "Targeting the proangiogenic VEGF-VEGFR protein-protein interface with drug-like compounds by in silico and in vitro screening," Chemistry & biology, vol. 18, pp. 1631-1639, 2011.
    [7] L. Laraia, G. McKenzie, D. R. Spring, A. R. Venkitaraman, and D. J. Huggins, "Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions," Chemistry & biology, vol. 22, pp. 689-703, 2015.
    [8] Y.-C. Wang, S.-L. Chen, N.-Y. Deng, and Y. Wang, "Computational probing protein–protein interactions targeting small molecules," Bioinformatics, vol. 32, pp. 226-234, 2016.
    [9] E. Valkov, T. Sharpe, M. Marsh, S. Greive, and M. Hyvönen, "Targeting protein–protein interactions and fragment-based drug discovery," in Fragment-Based Drug Discovery and X-Ray Crystallography, ed: Springer, 2011, pp. 145-179.
    [10] S. Mangani, Disruption of Protein-Protein Interfaces: Springer, 2015.
    [11] A. G. Cochran, "Antagonists of protein–protein interactions," Chemistry & biology, vol. 7, pp. R85-R94, 2000.
    [12] R. W. Spencer, "High‐throughput screening of historic collections: Observations on file size, biological targets, and file diversity," Biotechnology and bioengineering, vol. 61, pp. 61-67, 1998.
    [13] D. Rognan, "Rational design of protein–protein interaction inhibitors," MedChemComm, vol. 6, pp. 51-60, 2015.
    [14] O. S. Center, "Biophysicist targeting IL-6 to halt breast, prostate cancer," http://phys.org/news/2011-04-biophysicist-il-halt-breast-prostate.html.
    [15] M. Murakami, M. Hibi, N. Nakagawa, T. Nakagawa, K. Yasukawa, K. Yamanishi, et al., "IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase," Science, vol. 260, pp. 1808-1810, 1993.
    [16] M. J. Boulanger, D.-c. Chow, E. E. Brevnova, and K. C. Garcia, "Hexameric structure and assembly of the interleukin-6/IL-6 α-receptor/gp130 complex," Science, vol. 300, pp. 2101-2104, 2003.
    [17] H. Li, H. Xiao, L. Lin, D. Jou, V. Kumari, J. Lin, et al., "Drug design targeting protein–protein interactions (PPIs) using multiple ligand simultaneous docking (MLSD) and drug repositioning: discovery of raloxifene and bazedoxifene as novel inhibitors of IL-6/GP130 interface," Journal of medicinal chemistry, vol. 57, pp. 632-641, 2014.
    [18] "Wikipedia-Interleukin 6," https://en.wikipedia.org/wiki/Interleukin_6.
    [19] J. Li, H.-Y. Mo, G. Xiong, L. Zhang, J. He, Z.-F. Huang, et al., "Tumor microenvironment macrophage inhibitory factor directs the accumulation of interleukin-17-producing tumor-infiltrating lymphocytes and predicts favorable survival in nasopharyngeal carcinoma patients," Journal of Biological Chemistry, vol. 287, pp. 35484-35495, 2012.
    [20] G. Xie, Q. Yao, Y. Liu, S. Du, A. Liu, Z. Guo, et al., "IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures," International journal of oncology, vol. 40, pp. 1171-1179, 2012.
    [21] J. A. Gasche, J. Hoffmann, C. R. Boland, and A. Goel, "Interleukin‐6 promotes tumorigenesis by altering DNA methylation in oral cancer cells," International Journal of Cancer, vol. 129, pp. 1053-1063, 2011.
    [22] J. Deng, F. Grande, and N. Neamati, "Small molecule inhibitors of Stat3 signaling pathway," Current cancer drug targets, vol. 7, pp. 91-107, 2007.
    [23] G. Skiniotis, M. J. Boulanger, K. C. Garcia, and T. Walz, "Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor," Nature structural & molecular biology, vol. 12, pp. 545-551, 2005.
    [24] B. Ahmed, J. A. Tschen, P. R. Cohen, M. H. Zaki, P. L. Rady, S. K. Tyring, et al., "Cutaneous castleman's disease responds to anti–interleukin-6 treatment," Molecular cancer therapeutics, vol. 6, pp. 2386-2390, 2007.
    [25] L. C. Kuo, Fragment-based drug design: tools, practical approaches, and examples: Academic Press, 2011.
    [26] R. Mannhold, H. Kubinyi, G. Folkers, D. A. Erlanson, and W. Jahnke, Fragment-based Drug Discovery: Lessons and Outlook: John Wiley & Sons, 2015.
    [27] D. E. Scott, A. G. Coyne, S. A. Hudson, and C. Abell, "Fragment-based approaches in drug discovery and chemical biology," Biochemistry, vol. 51, pp. 4990-5003, 2012.
    [28] E. Edink, P. Rucktooa, K. Retra, A. Akdemir, T. Nahar, O. Zuiderveld, et al., "Fragment growing induces conformational changes in acetylcholine-binding protein: a structural and thermodynamic analysis," Journal of the American Chemical Society, vol. 133, pp. 5363-5371, 2011.
    [29] N. Howard, C. Abell, W. Blakemore, G. Chessari, M. Congreve, S. Howard, et al., "Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors," Journal of medicinal chemistry, vol. 49, pp. 1346-1355, 2006.
    [30] A. Potter, V. Oldfield, C. Nunns, C. Fromont, S. Ray, C. J. Northfield, et al., "Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution," Bioorganic & medicinal chemistry letters, vol. 20, pp. 6483-6488, 2010.
    [31] L. Gandhi, D. R. Camidge, M. R. de Oliveira, P. Bonomi, D. Gandara, D. Khaira, et al., "Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors," Journal of clinical oncology, vol. 29, pp. 909-916, 2011.
    [32] "Biovia Discovery Studio 4.5," http://accelrys.com/.
    [33] G. Jug, M. Anderluh, and T. Tomašič, "Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN," Journal of molecular modeling, vol. 21, pp. 1-12, 2015.
    [34] J. J. Irwin and B. K. Shoichet, "ZINC-a free database of commercially available compounds for virtual screening," Journal of chemical information and modeling, vol. 45, pp. 177-182, 2005.
    [35] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, et al., "DrugBank: a comprehensive resource for in silico drug discovery and exploration," Nucleic acids research, vol. 34, pp. D668-D672, 2006.
    [36] T. Lengauer and M. Rarey, "Computational methods for biomolecular docking," Current opinion in structural biology, vol. 6, pp. 402-406, 1996.
    [37] G. Wu, D. H. Robertson, C. L. Brooks, and M. Vieth, "Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm," Journal of computational chemistry, vol. 24, pp. 1549-1562, 2003.
    [38] A. Miranker and M. Karplus, "Functionality maps of binding sites: a multiple copy simultaneous search method," Proteins: Structure, Function, and Bioinformatics, vol. 11, pp. 29-34, 1991.
    [39] C. M. Stultz and M. Karplus, "MCSS functionality maps for a flexible protein," Proteins: Structure, Function, and Bioinformatics, vol. 37, pp. 512-529, 1999.
    [40] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, "CHARMM: A program for macromolecular energy, minimization, and dynamics calculations," Journal of computational chemistry, vol. 4, pp. 187-217, 1983.
    [41] "Root-mean-square deviation of atomic positions-wikipedia," https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions.
    [42] A. Krammer, P. D. Kirchhoff, X. Jiang, C. Venkatachalam, and M. Waldman, "LigScore: a novel scoring function for predicting binding affinities," Journal of Molecular Graphics and Modelling, vol. 23, pp. 395-407, 2005.
    [43] D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. R. Fogel, L. J. Fogel, et al., "Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming," Chemistry & biology, vol. 2, pp. 317-324, 1995.
    [44] A. N. Jain, "Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities," Journal of computer-aided molecular design, vol. 10, pp. 427-440, 1996.
    [45] I. Muegge, "PMF scoring revisited," Journal of medicinal chemistry, vol. 49, pp. 5895-5902, 2006.
    [46] Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant, "PubChem: a public information system for analyzing bioactivities of small molecules," Nucleic acids research, p. gkp456, 2009.
    [47] P. Willett, "Similarity-based approaches to virtual screening," Biochemical Society Transactions, vol. 31, pp. 603-606, 2003.
    [48] M. Hayashi, M.-C. Rho, A. Enomoto, A. Fukami, Y.-P. Kim, Y. Kikuchi, et al., "Suppression of bone resorption by madindoline A, a novel nonpeptide antagonist to gp130," Proceedings of the National Academy of Sciences, vol. 99, pp. 14728-14733, 2002.
    [49] P. Ertl and A. Schuffenhauer, "Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment comtributions," Cheminformatics, vol. 1, 2009.

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE