簡易檢索 / 詳目顯示

研究生: 王冠雄
Wang, Guan-Shiung
論文名稱: 以非平衡態分子動力學研究十字型與T型奈米碳管熱傳行為
The Study on Thermal Transport Behavior inside Nanotubes with Cross- and T-junction using Non-Equilibrium Molecular Dynamics
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 非平衡態分子動力學具分支構造奈米碳管熱流彈道型傳輸
外文關鍵詞: Non-Equilibrium Molecular Dynamics, Branched Carbon Nanotubes, Heat Flow, Ballistic and Diffusion Transport
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以非平衡態分子動力學模擬方法(NEMD),探討具分支構造奈米碳管的熱傳行為。本文首先介紹分子動力學的基礎理論與非平衡態分子動力學模擬法(NEMD)的原理與機制。在建立模型時,以熱焊的方式去接合十字型與T 型接頭(Cross- and T-junction),為了探討原子組態對熱流的影響,本研究將各別建立兩個不同型態的十字型與T 型接頭。模擬結果發現,T型奈米碳管的熱比較容易往前傳,而十字奈米碳管則比較容易往側傳,不同的原子組態也會有相同的趨勢。本研究觀察T型與十字形奈米碳管在低溫時的熱流結果,發現在T型奈米碳管中,熱更容易往前傳,而在十字型奈米碳管中,熱更容易往側傳。T型與十字形奈米碳管不一樣的熱流結果,有可能是彈道行傳輸機制與不同接頭之間交互作用所造成得。最後本研究探討T型與十字型奈米碳管的聲子相關性來解釋T型與十字型熱流結果上的差異。

    In this study, non-equilibrium molecular dynamics simulation method (NEMD) was used to investigate the heat transfer behavior inside branched carbon nanotubes(CNTs) with cross- and T-junctions. First, the atomic model of the branched nanotube was created by thermal welding at high temperature and different models were created in order to study the atomic configuration effect. Meanwhile, the temperature effect on the heat transfer behavior of the branched nanotube was also examined. From our simulation results, it was found that heat prefer to flow straight forward in T-junction branched CNT and flow sideway in cross-junction one. And atomic configurations at junction would not have significant effect on the heat flow. Furthermore, low temperature would enhance the heat flow trend, which implies that ballistic phonon transport existed in branched CNTs. Finally, phonons coherence was adopted to explain the phonon scattering behavior between branches inside branched CNTs with junctions.

    摘要 I Extended Abstract II 誌謝 XVIII 目錄 XIX 表目錄 XXIX 圖目錄 XXX 符號 XXXV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 論文架構 4 第二章 理論與方法 8 2.1 分子動力學理論 8 2.1.1 基本理論 8 2.1.2 勢能函數 8 2.1.3 邊界條件 11 2.1.4 系綜觀念 13 2.1.5 控溫器 13 2.1.6 初始條件 15 2.2 有限差分法及表列法 16 2.2.1 Velocity-Verlet演算法 16 2.2.2 表列法 17 2.3 在分子動力學中計算熱傳導的方法 18 2.3.1 NEMD原理與機制 19 第三章 模擬流程與結果 26 3.1 模擬模型與工具 26 3.2 模型建構與NEMD模擬流程 26 3.2.1 建立T型與十字型奈米管模型 26 3.2.2 十字型與T型奈米管模擬流程 28 3.3 十字型與T型奈米管模擬結果 29 第四章 分析與討論 57 4.1 溫度效應 57 4.2 分析聲子相關性 57 第五章 結論 87 5.1 本文結論 87 5.2 未來展望 88 參考文獻 89 附錄A 94 附錄B 102 附錄C 108

    [1] S. Berber, Y.-K. Kwon, and D. Tománek, "Unusually High Thermal Conductivity of Carbon Nanotubes," Physical Review Letters, vol. 84, p. 4613-4616, 2000.
    [2] R. S. Ruoff and D. C. Lorents, "Mechanical and thermal properties of carbon nanotubes," Carbon, vol. 33, p. 925-930, 1995.
    [3] J. Park, J. Lee, and V. Prakash, "Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks," Journal of Nanoparticle Research, vol. 17, p. 59, 2015.
    [4] J. Park and V. Prakash, "Thermal transport in 3D pillared SWCNT–graphene nanostructures," Journal of Materials Research, vol. 28, p. 940-951, 2013.
    [5] J. Shi, Y. Dong, T. Fisher, and X. Ruan, "Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions," Journal of Applied Physics, vol. 118, p. 044302, 2015.
    [6] J. Shi, Y. Zhong, T. S. Fisher, and X. Ruan, "Decomposition of the Thermal Boundary Resistance across Carbon Nanotube–Graphene Junctions to Different Mechanisms," ACS Applied Materials & Interfaces, vol. 10, p. 15226-15231, 2018.
    [7] M. Alaghemandi, F. Muller-Plathe, and M. C. Bohm, "Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations," The Journal of Chemical Physics, vol. 135, p. 184905, 2011.
    [8] J. Chen et al., "Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications," ACS Applied Materials & Interfaces, vol. 4, p. 81-86, 2012.
    [9] A. Aitkaliyeva, D. Chen, and L. Shao, "Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats," Scientific Reports, vol. 3, p. 2774, 2013.
    [10] F. Lian, J. P. Llinas, Z. Li, D. Estrada, and E. Pop, "Thermal conductivity of chirality-sorted carbon nanotube networks," Applied Physics Letters, vol. 108, p. 6, 2016.
    [11] E. G. Noya, D. Srivastava, and M. Menon, "Heat-pulse rectification in carbon nanotube Y junctions," Physical Review B, vol. 79, p. 115432, 2009.
    [12] H. Wu, J. Qiu, C. Hao, Z. Tang, and K. Han, "Molecular dynamics study of hydrogen adsorption in Y-junction carbon nanotubes," Journal of Molecular Structure: THEOCHEM, vol. 684, p. 75-80, 2004.
    [13] D. Wei et al., "A New Method to Synthesize Complicated Multibranched Carbon Nanotubes with Controlled Architecture and Composition," Nano Letters, vol. 6, p. 186-192, 2006.
    [14] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, p. 56, 1991.
    [15] F. Banhart, "The Formation of a Connection between Carbon Nanotubes in an Electron Beam," Nano Letters, vol. 1, p. 329-332, 2001.
    [16] L. P. Biró et al., "From straight carbon nanotubes to Y-branched and coiled carbon nanotubes," Diamond and Related Materials, vol. 11, p. 1081-1085, 2002.
    [17] Q. Liu, W. Liu, Z.-M. Cui, W.-G. Song, and L.-J. Wan, "Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods," Carbon, vol. 45, p. 268-273, 2007.
    [18] C. Luo, L. Liu, K. Jiang, L. Zhang, Q. Li, and S. Fan, "Growth mechanism of Y-junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition," Carbon, vol. 46, p. 440-444, 2008.
    [19] F. Müller-Plathe, "A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity," The Journal of Chemical Physics, vol. 106, p. 6082-6085, 1997.
    [20] X. Yang, D. Chen, Y. Du, and A. C. To, "Heat conduction in extended X-junctions of single-walled carbon nanotubes," Journal of Physics and Chemistry of Solids, vol. 75, p. 123-129, 2014.
    [21] Z. Zhang, A. Kutana, A. Roy, and B. I. Yakobson, "Nanochimneys: Topology and Thermal Conductance of 3D Nanotube–Graphene Cone Junctions," The Journal of Physical Chemistry C, vol. 121, p. 1257-1262, 2017.
    [22] 羅友威, "以非平衡態分子動力學研究完美及具分支構造奈米碳管之熱傳行為," 碩士, 機械工程學系, 國立成功大學, 台南市, 2016.
    [23] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics. I. General Method," The Journal of Chemical Physics, vol. 31, p. 459-466, 1959.
    [24] W. B. Donald, A. S. Olga, A. H. Judith, J. S. Steven, N. Boris, and B. S. Susan, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons," Journal of Physics: Condensed Matter, vol. 14, p. 783, 2002.
    [25] D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, vol. 42, p. 9458-9471, 1990.
    [26] J. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods," Computers in Physics, vol. 7, p. 625-625, 1993.
    [27] T. Dumitrica, "Trends in Computational Nanomechanics: Transcending Length and Time Scales," Springer Science & Business Media, 2010.
    [28] P. H. Hünenberger, "Thermostat Algorithms for Molecular Dynamics Simulations," Advanced Computer Simulation: Approaches for Soft Matter Sciences I, vol. 173, p. 105-147, 2005.
    [29] G. Bussi, D. Donadio, and M. Parrinello, "Canonical sampling through velocity rescaling," The Journal of Chemical Physics, vol. 126, p. 014101, 2007.
    [30] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, p. 1695-1697, 1985.
    [31] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of Chemical Physics, vol. 81, p. 511-519, 1984.
    [32] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, p. 3684-3690, 1984.
    [33] S. A. Adelman and J. D. Doll, "Generalized Langevin equation approach for atom/solid‐surface scattering: General formulation for classical scattering off harmonic solids," The Journal of Chemical Physics, vol. 64, p. 2375-2388, 1976.
    [34] T. Schlick, "Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide," Springer Science & Business Media, 2010.
    [35] T. Schneider and E. Stoll, "Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions," Physical Review B, vol. 17, p. 1302-1322, 1978.
    [36] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, p. 98-103, 1967.
    [37] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, p. 637-649, 1982.
    [38] B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, p. 430-432, 1973.
    [39] T. N. Heinz and P. H. Hünenberger, "A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions," Journal of Computational Chemistry, vol. 25, p. 1474-1486, 2004.
    [40] D. Frenkel and B. Smit, "Understanding Molecular Simulation, Second Edition: From Algorithms to Applications," San Diego: Academic, 2002.
    [41] J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids," London: Academic, 1986.
    [42] K. C. Fang, C. I. Weng, and S. P. Ju, "An Investigation into The Structural Features and Thermal Conductivity of Silicon Nanoparticles using Molecular Dynamics Simulations," Nanotechnology, vol. 17, p. 3909-3914, 2006.
    [43] T. Ikeshoji and B. Hafskjold, "Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface," Molecular Physics, vol. 81, p. 251-261, 1994.
    [44] P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, p. 144306, 2002.
    [45] W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," Journal of Molecular Graphics, vol. 14, p. 33-38, 1996.
    [46] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, p. 1-19, 1995.
    [47] A. T. S. Plimpton, P. Crozier, and A. Kohlmeyer. Lammps Www Site. Available: http://lammps.sandia.gov.
    [48] M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones, and P. Ajayan, "Molecular Junctions by Joining Single-Walled Carbon Nanotubes," Physical Review Letters, vol. 89, p. 4, 2002.
    [49] S. Junichiro and M. Shigeo, "Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes," Japanese Journal of Applied Physics, vol. 47, p. 2005, 2008.
    [50] A. Singh and E. B. Tadmor, "Removing artificial Kapitza effects from bulk thermal conductivity calculations in direct molecular dynamics," Journal of Applied Physics, vol. 117, p. 185101, 2015.
    [51] J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J. H. McGaughey, "Predicting phonon dispersion relations and lifetimes from the spectral energy density," Physical Review B, vol. 81, p. 081411, 2010.
    [52] Z. Wang and X. Ruan, "Phonon spectral energy density analysis of solids: The k point reduction in the first Brillouin zone of FCC crystals and a case study on solid argon," Computational Materials Science, vol. 121, p. 97-105, 2016.
    [53] Z. Wang and X. Ruan, "On the domain size effect of thermal conductivities from equilibrium and nonequilibrium molecular dynamics simulations," Journal of Applied Physics, vol. 121, p. 044301, 2017.
    [54] A. Y. Nobakht, S. Shin, K. D. Kihm, D. C. Marable, and W. Lee, "Heat flow diversion in supported graphene nanomesh," Carbon, vol. 123, p. 45-53, 2017.
    [55] Z. Xiong, X. Wang, K. H. K. Lee, X. Zhan, Y. Chen, and J. Tang, "Thermal Transport in Supported Graphene Nanomesh," ACS Applied Materials & Interfaces, vol. 10, p. 9211-9215, 2018.

    無法下載圖示 校內:2024-03-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE