簡易檢索 / 詳目顯示

研究生: 紀彥偉
Chi, Yen-Wei
論文名稱: 複合圓柱層殼三維非線性問題漸近理論解析
A Refined Asymptotic Theory for the Nonlinear Analysis of Laminated Cylindrical Shells
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 114
中文關鍵詞: 微擾方法複合圓柱層殼三維分析漸近理論幾何非線性
外文關鍵詞: perturbation, asymptotic theory, FSDT, nonlinear analysis, 3D elasticity, cylindrical shells
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文在三維線性彈性力學架構下,依據改良三維漸近解析理論並藉由微擾方法分析複合圓柱層殼之幾何非線性行為。文中考慮幾何非線性效應之三維彈性力學方程式包括Green-Lagrange的應變與位移關係式、以second Piola-Kirchhoff應力張量表示之平衡方程式及單斜晶體材料遵循之廣義虎克定律。依據改良三維漸近解析理論,重新整理三維非線性分析相關之基本方程式,再經過適當的無因次化、漸近展開、連續積分及將橫向剪力變形的影響提至首階等推衍程序後,求得具遞迴特性之各階問題相關控制方程式,文中顯示von Karman一階剪力變形理論(FSDT)即為三維非線性理論之首階近似理論。在首階及高階問題的控制方程式中,其線性項之微分運算子均相同,非線性項中含有未知變數的各項則以具規則性的形式呈現,而其他的非齊性項則可藉由較低階問題解經計算求得。所以,本漸近理論可由系統化的求解方式循序漸近的分析求得圓柱複合層殼的三維非線性分析解。

      Within the framework of the three-dimensional (3D) nonlinear elasticity, a refined asymptotic theory is developed for the nonlinear analysis of laminated circular cylindrical shells. In the present formulation, the basic equations including the nonlinear relations between the finite strains (Green strains) and displacements, the nonlinear equilibrium equations in terms of the Kirchhoff stress components and the generalized Hooke’s law for a monoclinic elastic material are considered. After using proper nondimensionalization, asymptotic expansion, successive integration and then bringing the effects of transverse shear deformation into the leading-order level, we obtain recursive sets of the governing equations for various orders. It is shown that the von Karman-type first-order shear deformation theory (FSDT) is derived as a first-order approximation to the 3D nonlinear theory. The differential operators in the linear terms of governing equations for the leading order problem remain identical to those for the higher-order problems. The nonlinear terms related to the unknowns of the current order appear in a regular pattern and the other nonhomogeneous terms can be calculated by the lower-order solutions. It is also illustrated that the nonlinear analysis of laminated circular cylindrical shells can be made in a hierarchic and consistent way.

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1-1研究動機與目的 1 1-2本文內容 5 第二章 三維非線性問題之漸近理論 6 2-1三維非線性分析基本方程式 6 2-1-1應變與位移關係 6 2-1-2應力與應變關係 8 2-1-3應力平衡方程式 9 2-2漸近理論 12 2-2-1重新整理 12 2-2-2無因次化 16 2-2-3漸近展開 20 2-2-4連續積分 25 2-3邊界條件 32 第三章 無限長複合圓柱層殼問題之解析 37 3-1三維非線性分析基本方程式 38 3-2邊界條件 40 3-3複合圓柱層殼承受柱形彎曲問題之解析 43 第四章 軸對稱複合圓柱層殼問題之解析 50 4-1三維非線性分析基本方程式 50 4-2邊界條件 53 4-3複合圓柱層殼承受軸對稱載重問題之解析 56 第五章 微分數值法 63 5-1微分數值法理論 64 5-2以多項式作為測試函數 66 5-3以Lagrange 內插多項式作為測試函數 70 5-4節點選取 72 第六章 數值範例與討論 74 第七章 結論 89 參考文獻 90 附錄A 94 附錄B 96 附錄C 101 附錄D 103 附錄E 104

    Bellman, R. and Casti, J., Differential quadrature and long-term integration, J. Math. Anal. Appl. 34, 235–238, 1971.
    Bellman, R. B., Kashef, G. and Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comp. Physics 10, 40–52, 1972.
    Bert, C. W., Wang X. and Striz, A. G., Differential quadrature for static and free vibration analysis of anisotropic plates, Int. J. Solid Struct. 30, 1737-1744, 1993.
    Bert, C. W. and Malik, M., Differential quadrature method in computational mechanics: A Review, Appl. Mech. Rev. 49, 1–27, 1996.
    Bhaskar, K. and Varadan, T. K., Exact elasticity solution for laminated anisotropic cylindrical shells, J. Appl. Mech. 60, 41-47, 1993.
    Chia, C. Y., Nonlinear analysis of plates, McGraw-Hill, New York, 1980.
    Chia, C. Y., Geometrically nonlinear behavior of composite plates: a review. Appl. Mech. Review 41, 439-451, 1988.
    Dennis, S.T., A Galerkin solution to geometrically nonlinear laminated shallow shell equations. Comput. & Struct. 63, 859-874, 1997.
    Du, H., Lim, M. K. and Lin, R. M., Application of generalized differential quadrature method to structure problems, Int. J. Numer. Method Eng. 37, 1881-1896, 1994.
    Feng, Y. and Bert, C. W., Application of the quadrure method to flexural vibration analysis of geometrically non-linear beam, Nonlinear Dynamics 3, 13-18, 1992.
    Fung, Y. C., Foundations of solid mechanics, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
    Icardi, U., The nonlinear response of unsymmetric multilayered plates using smeared laminate and layerwise models, Compos. Struct. 29, 349-364, 1994.

    Lekhnitskii, S. G., Theory of elasticity of an anisotropic elastic body, Holden-Day, San Franciso, 1963.
    Librescu, L., Refined geometrically nonlinear theories of anisotropic laminated shells, Quarterly Appl. Math. XLV, 1-22, 1987.
    Love, A. E. H., A treatise on the mathematical theory of elasticity, Dover, New York, 1944.
    Moussaoui, F. and Benamar, R., Nonlinear vibrations of shell-type structures: a review with bibliography, J. Sound Vibr. 255, 161-184, 2002.
    Nayfeh, A. H., Introduction to perturbation techniques, Wiley, New York, 1981.
    Novozhilov, V. V., Foundations of the nonlinear theory of elasticity, Graylock Press, New York, 1953.
    Reddy, J.N., Chandrashekhara, K., Nonlinear analysis of laminated shells including transverse shear strains, AIAA J. 23, 440-441, 1985.
    Ren, J. G., Analysis of laminated circular cylindrical shells under axisymmetric loading, Compos. Struct. 30, 271-280, 1995.
    Saada, A. S., Elasticity: theory and applications, Pergamon Press, New York, 1974.
    Sathyamoorthy, M., Nonlinear vibration analysis of plates: a review and survey of current developments, Appl. Mech. Review 40, 1553-1561, 1987.
    Shu, C. and Richard, B. E., Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids 15, 791-798, 1992.
    Striz, A. G., Chen, W. and Bert, C. W., Static analysis of structures by the quadrature element meyhod(QEM), Int. J. Solid Struct. 31, 2807-2818, 1994.
    Striz, A. G., Wang X. and Bert, C. W., Harmonic differential method and applications to structural components, Acta Mechanica 111, 85-94, 1995.
    Sun, C.T. and Chin, H., On large deflection effects in unsymmetric cross-ply composite laminates, J. Compos. Mater, 22, 1045-1059, 1988.
    Tan, H. F., Tian, Z. H. and Du, X. W., A new geometrical nonlinear laminated theory for large deformation analysis, Int. J. Solids Struct. 37, 2577-2589, 2000.
    Toorani, M. H. and Lakis, A. A., General equations of anisotropic plates and shells including transverse share deformations, rotary inertia and initial curvature effects, J. Sound Vibr. 237, 561-615, 2000.
    Turvey, G.J., Large deflection cylindrical bending analysis of cross-ply laminated strips, J. Mech. Engng. Sci. 23, 21-29, 1981.
    Washizu, K., Variational methods in elasticity & plasticity, Pergamon Press, New York, 1974.
    Wu, C. P. and Chen, C. W., Elastic buckling of multilayered anisotropic conical shells, J. Aero. Engng. ASCE 14, 29-36, 2001.
    Wu, C. P. and Chiu, S. J., Thermoelastic buckling of laminated composite conical shells. J. Therm. Stresses 24, 881-901, 2001.
    Wu, C. P. and Chiu, S. J., Thermally induced dynamic instability of laminated composite conical shells, Int. J. Solids Struct. 39, 3001-3021, 2002.
    Wu, C. P. and Hung, Y. C., Asymptotic theory of laminated circular conical shells, Int. J. Engng. Sci. 37, 977-1005, 2001.
    Wu, C. P., Hung, Y. C. and Lo, J. Y., A refined asymptotic theory of laminated circular conical shells, Euro. J. Mech. A/Solids 21, 281-300, 2002.
    Wu, C. P., Tarn, J. Q. and Chen, P. Y., Refined asymptotic theory of doubly curved laminated shells, J. Engng. Mech. ASCE 123, 1238-1246, 1997.
    Wu, C. P. and Hung Y. C., Asymptotic theory of laminated circular conical shells, Int. J. Engng. Sci. 37, 977-1005, 1999.
    Wu, C. P., Tarn, J. Q. and Chi, S. M., Three-dimensional analysis of doubly curved laminated shells, J. Engng. Mech. ASCE 122, 391-401, 1996a.

    Wu, C. P., Tarn, J. Q. and Chi, S. M., An asymptotic theory for dynamic response of doubly curved laminated shells, Int. J. Solids Struct. 33, 3813_3841, 1996b.
    Wu, C. P., Tarn, J. Q. and Tang, S. C., A refined asymptotic theory for dynamic analysis of doubly curved laminated shells, Int. J. Solids Struct. 35, 1953-1979, 1998.
    Wu, C. P. and Wu, C. H., Asymptotic differential quadrature solutions for the free vibration of laminated conical shells, Comput. Mech. 25, 346-357, 2000.
    Xu, C. S. and Chia, C. Y., Non-linear analysis of unsymmetrically laminated moderately thick shallow spherical shells, Int. J. Nonlinear Mech. 29, 247-259, 1994.
    Xu, C. S., Xia, Z. Q. and Chia, C. Y., Nonlinear theory and vibration analysis of laminated truncated thick conical shells, Int. J. Nonlinear Mech. 31, 139-154, 1996.
    Yuan, F. G., Yang, W. and Kim, H., Analysis of axisymmetrically-loaded filament wound composite cylindrical shells, Comp. Struct. 50, 115-130, 2000.
    Zienkiewicz, O. C., The finite element method, McGraw-Hill, London, UK, 1976.

    下載圖示 校內:立即公開
    校外:2005-01-12公開
    QR CODE