| 研究生: |
陳宗佑 Chen, Zong-You |
|---|---|
| 論文名稱: |
Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 系壓電陶瓷之製作及其應用 The fabrications of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 based piezoelectric ceramics and their applications |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | PZT-PMN 、Qm 、壓電變壓器 、LED |
| 外文關鍵詞: | PZT-PMN, Qm, piezoelectric transformer, LED |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將以Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 (PZT-PMN)為基礎材料,探討MnO2與NiO的添加對其壓電特性的影響。(1-x)PZT-xPMN陶瓷在XRD中發現有少量的Pb(Zr,Ti)O3殘留,最佳的邊界條件為0.625PZT-0.375PMN,其徑向機電耦合因數(kp)和厚度機電耦合因數(kt)皆可達55%以上。0.625PZT-0.375PMN陶瓷添加MnO2後,晶粒變得更大且更為均勻,此外,因為Mn4+離子取代B-site造成氧空缺的產生。0.625PZT-0.375PMN + 0.5 wt.% MnO2陶瓷可得到最大機械品質因數(Qm) 2950和最低共振阻抗0.7Ω。NiO的摻雜使得0.625PZT-0.375PMN + 0.5 wt.% MnO2陶瓷的機電耦合因數可提升至60%以上,機械品質因數(Qm)為1500。本實驗將以高Qm、低阻抗的組成0.375Pb(Mg1/3Nb2/3)O3- 0.625Pb(Zr0.4Ti0.6)O3 + 0.5 wt.% MnO2做為壓電變壓器的材料,藉由不同電極面積比率,探討對輸出功率、電壓增益和效率的影響,在製備出的壓電變壓器中,最大輸出功率可達>20W、效率達95%以上。最後,將製備出的壓電變壓器在輸入電壓為AC 60V下驅動LED bar。
In this study, Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 (PZT-PMN) ceramics would be as a base material, and the piezoelectric characteristics of MnO2 and NiO doped into PZT-PMN ceramics were investigated. (1-x)PZT-xPMN ceramics with Pb(Zr,Ti)O3 phase were detected in all XRD profiles. The optimum boundary condition for (1-x)PZT-xPMN ceramics is x = 0.375, which exhibits the excellent properties with 55 % of above kp and kt values. When MnO2 doped into 0.625PZT-0.375PMN ceramics, the grain size becomes greater and homogeneous. In addition, the oxygen vacancies formed due to the Nb5+ ion was substituted by the Mn4+ ion, and thus higher Qm value of 2,950 and lower resonant impedance of 0.7Ω were obtained in 0.625PZT-0.375PMN + 0.5 wt.% MnO2 ceramics. NiO-doped 0.625PZT-0.375PMN + 0.5 wt.% MnO2 ceramics shows higher kp and kt values of above 60% and lower Qm value of 1,500 compared with un-doped. The composition of 0.375Pb(Mg1/3Nb2/3)O3-0.625Pb(Zr0.4Ti0.6)O3 + 0.5 wt.% MnO2 ceramics with high Qm and low impedance were chosen for fabricating the piezoelectric transformers. The effects of electrode area ratio on output power, gain voltage, and efficiency were studied. Finally, a maximum output power of > 20 W and a high efficiency of >95% were obtained. LED bar was driven using this piezoelectric transformer under an AC input voltage of 60V.
[1] S. Roberts, “Dielectric and piezoelectric properties of barium titanate” J. Phys. Rev., 71, 890 (1947).
[2] B. Jaffe, R.S. Roth and S. Marzullo, “Properties of piezoelectric eramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3” J. Res. Nat. Bur. Stds., 55, 239 (1955).
[3] Q. Tan and D. Viehland, “Influence of thermal and electrical histories on domain structure and polarization switching in potassium-modified lead zirconate titanate ceramics” J. Am. Ceram. Soc., 81, 328 (1998).
[4] J. M. Herbert, Ferroelectric Transducers and Sensors, Gordon and Breach, New York (1982).
[5] J. Hu, Y. Fuda, M. Katsuno and T.Yoshida, “Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer” Jap. J. Appl. Phys., 38, 3208 (1999).
[6] T. Idogaki, T. Tominaga, K. Senda, N. Ohya and T. Hattori, “Bending and expanding motion actuators, Sensors and Actuators” Sensors and Actuators A., 54, 760 (1996).
[7] C. Galassi, G. Camporesi, G. Fabbri, A.L. Costa and E. Roncari, “Processing of a multilayer bender type actuator” J. Eur. Ceram. Soc., 21, 2011 (2001).
[8] E. Defaÿ, C. Millon, C. Malhaire and D. Barbier, “PZT thin films integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane” Sensors and Actuators A., 99, 64 (2002).
[9] P. Verardi, M. Dinescu, F. Craciun, R. Dinu, V. Sandu, L. Tapfer and A. Cappello, “Pulsed laser deposition of multilayer TiN/Pb(ZrxTi1-x)O3 for piezoelectric microdevices” Sensors and Actuators A., 74, 41 (1999).
[10] R. Z. Zuo, L. T. Li and Z. L. Gui, “Modified cofiring behaviors between PMN-PNN-PT piezoelectric ceramics and PZT-doped 70Ag-30Pd alloy metallization” Mater. Sci. Eng A., 326, 202 (2002).
[11] K. Saegusa, “Preparation by a sol-gel process and dielectric properties of lead-zirconate-titanate glass-ceramic thin films” Jpn. J. Appl. Phys., 36, 3602 (1997).
[12] D. E. Wittmer and R. C. Buchanan, “Low-temperature densification of lead-zirconate-titanate with vanadium pentoxide addtive” J. Am. Ceram. Soc., 64, 485 (1981).
[13] Z. Gui, L. Li, S. Gao and X. Zhang, “Low-temperature sintering of lead-based piezoelectric ceramics” J. Am. Ceram. Soc., 72, 486 (1989).
[14] S. Takahashi, “Sintering Pb(Zr,Ti)O3 ceramics at low temperature” Jpn. J. Appl. Phys., 19, 771 (1980).
[15] S. Kawashima, O. Ohnishi, H. Hakamata, S. Tagami, A. Fukuoka, T. Inoue, and S. Hirose, Proc.-IEEE Ultrason. Symp. 1, 525 (1994)
[16] Y. Fuda, K. Kumasaka, M. Katsuno, H. Sato, and Y. Ino, Jpn. J. Appl. Phys., Part 1 36, 3050 (1997).
[17] O. Ohnishi, H. Kishie, A. Iwamoto, Y. Sasaki, T. Zaitsu, and T. Inoue, Proc.-IEEE Ultrason. Symp. 1, 483 (1992).
[18] J. H. Hu, Y. Fuda, M. Katsuno, and T. Yoshida, Jpn. J. Appl. Phys., Part 1 38, 3208 (1999).
[19] M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, Jpn. J. Appl. Phys., Part 1 40, 3637 (2001).
[20] T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, “Finite Element Simulation of Piezoelectric Transformers” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, July (2001).
[21] P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled Disk-type Piezoelectric Transformers” Jpn. J. Appl. Phys. 41, 1446 (2002)
[22] L. Longtu, Z. Ningxin, B. Chenyang, C. Xiangcheng, and G. Zhilun, “Multilayer piezoelectric ceramic transformer with low temperature sintering” J. Mater. Sci., 41, 155 (2006).
[23] K. T. Chang, H. C. Chiang, and K. S. Lyu, “Effect of electrode layouts on voltage gain characteristics for ring-shaped piezoelectric transformers” Sensors and Actuators A, 141, 166 (2008).
[24] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 119,123 (1994).
[25] Hiromu Ouchi, Katsuo Nagano, and Shigeru Hayakawa“Piezoelectric Properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 Solid Solution Ceramics” J. Am. Ceram. Soc., 48, 631 (1965).
[26] Hiromu Ouchi, Masamitsu Nishida, and Shigeru Hayakawa “Piezoelectric Properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 Ceramics Modified with Certain Additive” J. Am. Ceram. Soc., 49, 577 (1966).
[27] Lin Sun, Chude Feng, Qingchi Sun, Hua Zhou, “Study on Pb(Zr,Ti)O3-
Pb(Zb1/3Nb2/3)O3-Pb(Sn1/3Nb2/3)O3-Pb(Mn1/3Sb2/3)O3 quinary system pie-zoelectric ceramics” Materials Science and Engineering B, 122, 61 (2005).
[28] Z. P. Yang, Y. F. Chang, X. M. Zong, J. K. Zhu, “Preparation and properties of PZT-PMN-PMS ceramics by molten slat synthesis” Materials Letters, 59, 2790 (2005).
[29] Z. P. Yang, R. Zhang, L. L. Yang, Y. F. Chang, “Effects of Cr2O3 doping on the electrical properties and the temperature stabilties of PNW-PMN PZT ceramics” Materials Research Bulletin, 42, 2156 (2007).
[30] Z. P. Yang, X. L. Chao, C. Kang, R. Zhang, “Low temperature sintering and properties of piezoelectric PZT- PFW- PMN ceramics with YMnO3 addition” Low temperature sintering and properties of piezoelectric PZT-PFW-PMN ceramics with YMnO3 addition” Materials Research Bulletin, 43, 38 (2008).
[31] H. L. Du, Z. B. Pei, W. C. Zhou, F. Luo, S. B. Qu, “Effect of addition of MnO2 on piezoelectric properties of PNW-PMS-PZT eramics”Materials Science and Engineering A, 421, 286 (2006).
[32] Z. P. Yang, H. Li, X. M. Zong, Y. F. Chang, “Structure and electriacal properties of PZT- PMS-PZN piezoelectirc ceramics” Journal of the European Ceramic Society, 26, 3197 (2006).
[33] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 7 (1994).
[34] B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics”, Cleveland, Ohio, 25 (1971).
[35] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio (1971).
[36] 汪建民, “陶瓷技術手冊 (上)” 金華科技圖書, 100, (1999).
[37] D. L. Corker, R .W. Whatmore, E. Ringgaard and W. W. Wolny, “Liquid phase sintering of PZT ceramics” J. Euro. Ceram. Soc., 20, 2039 (2000).
[38] A. J. Moulson and J. M. Herbert, “Electroceramics”, 347 (2003).
[39] 邱碧秀, “電子陶瓷材料” 全欣科技圖書, 50 (1997).
[40] 吳朗, “電子陶瓷(介電)” 全欣科技圖書, 69-73 (1994).
[41] J. L. Du, J. H. Hu, K. J. Tseng, C. S. Kai, and G. C. Siong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 579 (2006).
[42] 邱良祥, “環形壓電變壓器應用於直流電源轉換器之研究” ,國立成功大學電機工程學系碩士論文, 2002.
[43] 張博舜, “圓盤形壓電變壓器之研究” ,國立高雄應用科技大學機械與精密工程研究所碩士論文, 2007.
[44] G. Mingsen, D. M. Lin, K. H. Lam, S. Wang, Helen L. W. Chan, and X. Z. Zhao, “A lead-free piezoelectric transformer in radial vibration modes” Review of Scientific Instruments 78, 035102 (2007).
[45] “IRE Standards on Piezoelectric Crystals, Measurements of PiezoelectricCeramics” Proc. IRE, 49, 1161 (1961).
[46] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, “Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics” Jpn. J. Appl. Phys., 44, 6136 (2005).
[47] Zupei Yang, Xiaolian Chao, Rui Zhang, Yunfei Chang, Yaoqiang Chen, “Fabrication and electrical characteristics of piezoelectric PMN–PZN–PZT ceramic transformers” Materials Science and Engineering B 138 (2007) 277–283.
[48] Vladimir Koval, Carlos Alemany, Jaroslav Briancin, Helena Brunckova, Karol Saksl, “Effect of PMN modification on structure and electrical response of xPMN–(1-x)PZT ceramic systems” Journal of the European Ceramic Society 23 (2003) 1157–1166.
[49] S.L. Swartz and T.R. Shrout, “Fabrication of perovskite lead magnesium niobate”, Materials Research Bulletin Volume 17, Issue 10, October 1982, Pages 1245-1250.
[50] Y. D. Hou, M. K. Zhu, F. Gao, H. Wang, B. Wang, H.Yan and C. S. Tian, “Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8O3 ceramics” J. Am. Ceram. Soc., 87, 847 (2004).
[51] K. Toshio, S. Toshimasa, T. Takaaki and D. Masaki, “Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3” Jpn. J. Appl. Phys., 31, 3058 (1992).
[52] S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim and K. W. Lee, “Low-temperature sintering of MnO2-doped PZT-PZN Piezoelectric ceramics” J Electroceram 18:311-315 (2007).
[53] 歐敏男, “La1-xAxMnO3(A=Ca、Sr)薄膜增強磁阻效應之研究” ,國立中山大學物理研究所碩士論文, 2000.
[54] 蔡淑卿, “ZnO與ZnS摻猛螢光薄膜之發光性質研究” ,國立成功大學材料科學及工程研究所碩士論文, 2004.
校內:立即公開