簡易檢索 / 詳目顯示

研究生: 劉岳旻
Liu, Yueh-Min
論文名稱: 建立一個可應用在聚雙甲基矽氧烷基材上進行原位合成胜肽晶片的分析平台
Development of Poly-dimethylsiloxane-based Peptide Array by In-situ Synthesis
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 胜肽晶片聚雙甲基矽氧烷-奈米金 複合基材原位合成法光化學合成
外文關鍵詞: peptide array, PDMS-gold nanoparticles composite film, in-situ synthesis, photosynthesis
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來胜肽晶片(peptide array)運用在蛋白質體學的研究上愈來愈受重視,像是應用在大量掃描分析蛋白質激酶、蛋白酶活性分析及蛋白質的指紋辨識,胜肽晶片提供一個方便實用的分析平台。傳統上,胜肽晶片大部分皆以玻璃或紙做為基材,但它們分別存在著不具撓曲性及低透光度、高螢光背景值的缺點。因此在本研究中,我們利用低價、高光穿透性且生物相容性高的聚雙甲基矽氧烷(PDMS)聚合物做為基材,並結合原位(in situ)合成法製備胜肽晶片的分析平台上。進行完原位合成金奈米粒子於PDMS表面後,我們利用分子自組裝的方法在金奈米粒子上進行化學修飾,讓金奈米粒子表面同時帶有具活性端能與胺基酸進行共價鍵及能抗非專一性吸附的官能基聚乙二醇。在原位合成胜肽晶片的部分,我們先最佳化能與PDMS相容之有機溶劑,並使用在特定位置植入光起始試劑(photoinitiator, PI)以避免點與點間的汙染,再結合PGA-P (photogenerated acid precursor)進行光化學反應的技術,確保合成在晶片上的胜肽序列的正確性。最後,我們利用自家合成N端具有保護基且側鏈帶有螢光分子Cy5的離胺酸(Lys)組件(Boc-Lys-Cy5)驗證此原位合成胜肽於PDMS基材上的策略,我們成功地藉由五個光化學合成的步驟於基材上接上五個離胺酸(Lys)組件形成聚離胺酸(poly-Lys)。此外,原位合成在PDMS上的奈米金也藉由其高表面積的特性增強整體偵測的靈敏度。

    Peptide arrays are becoming popular for conducting proteomics studies such as the large scale screening for kinase or protease activity and protein finger printing. Although cellulose membranes and glass slides are popular substrates for peptide arrays, they suffer from one or two drawbacks including low transparency, high background fluorescence, and low flexibility. Poly(dimethylsiloxane) (PDMS) is a good alternative due to its low cost, high optical transparency, and biocompatibility. In this study, we aim to develop a PDMS-based peptide arrays via in-situ synthesis. We first utilized an in-situ synthesis method to form a AuNP layer on PDMS surface and then modified the AuNP surface with active groups and the shorter polyethylene glycol which could minimize nonspecific bindings. The active groups were shown to form covalent binding with aminoacids via EDC/NHS chemistry. For in-situ peptide synthesis, PDMS-compatible solvent was judiciously chosen for photopolymerization reaction and the photoinitiator (PI) was implanted into the substrate before the first photo-reaction to minimize cross contaminations between adjacent aminoacid layers. Using Boc-Lys-Cy5 as the building block, we showed the method could successfully complete a 5-step synthesis for a 5-mer of poly-Lys (Lys-Lys-Lys-Lys-Lys) molecule. Furthermore, the AuNP layer was shown to increase the detection sensitivity by increasing the surface area.

    目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章、序論 1 1.1 固相胜肽合成法(SOLID PHASE PEPTIDE SYNTHESIS) 1 1.2 胜肽晶片(PEPTIDE ARRAY)之發展 1 1.2.1 基材 2 1.2.2 表面化學修飾 3 1.2.3 胜肽晶片之應用 5 1.2.3.1 酵素活性剖析(Enzyme activity Profiling) 5 1.2.3.2 胜肽親合力剖析(Affinity Profiling) 6 1.2.4 偵測方法 8 1.2.4.1 無標記偵測法(Label-free methods) 8 1.2.4.2 標記探針方法(Labelled probe methods ) 9 1.2 聚雙甲基矽氧烷(POLY-(DIMETHYLSILOXANE))(PDMS) 10 1.3 金奈米粒子在生物晶片上的應用 12 1.4 研究目的與動機 13 第二章、實驗 25 2.1 實驗藥品與儀器 25 2.1.1 藥品 25 2.1.2 儀器 25 2.2實驗方法 26 2.2.1 PDMS基材之製作 26 2.2.2 金奈米粒子製備 26 2.2.3 多電層修飾PDMS基材並利用肌紅蛋白分散金奈米粒子於PDMS基材上 27 2.2.4 利用肌紅蛋白分散金奈米粒子於PDMS上的系統偵測乙二胺 28 2.2.5 原位合成金奈米粒子於PDMS基材上 28 2.2.6 PDMS-AuNPs複合基材應用至胜肽晶片可行性之測試 28 2.2.7 利用MALDI-TOF測試PKA激酶於液相中磷酸化kemptide的活性 29 2.2.8晶片上進行激酶活性測試(Kinase Assay) 29 2.2.9 金奈米粒子上自組裝分子HS-PEG-COOH及HS-PEG-OCH3比例的最佳化 30 2.2.10 PDMS-AuNPs複合晶片上測試PGA-P及植入光起始試劑於基材中對光化學反應的相關測試 31 2.2.11 Boc-Lys-Cy5之合成與鑑定 32 2.2.12 PDMS-AuNPs複合晶片上原位合成胜肽並結合Cy5螢光分子之測試 32 第三章、結果與討論 34 3.1 金奈米粒子對偵測靈敏度的影響 34 3.2 原位合成PDMS-金奈米粒子複合基材 34 3.3 PDMS-AUNPS複合基材應用至胜肽晶片可行性之測試 35 3.4 金奈米粒子上自組裝分子HS-PEG-NH2及HS-PEG-OCH3比例之最佳化 36 3.5 利用MALDI-TOF測試PKA激酶於液相中磷酸化KEMPTIDE 36 3.6 PDMS-AUNPS複合基材上進行激酶活性測試(KINASE ASSAY) 37 3.7 液相中測試PGA-P及光化學反應溶劑的選擇 37 3.8 PDMS-AUNPS複合基材之表面鑑定 39 3.9 金奈米粒子上自組裝分子HS-PEG-COOH及HS-PEG-OCH3比例的最佳化 39 3.10 PDMS-AUNPS複合晶片上測試PGA-P及植入光起始試劑於基材中對光化學反應的影響 40 3.11 確認金奈米粒子不會淬滅(QUENCH)CY5螢光分子 42 3.12 BOC-LYS-CY5之合成與鑑定 42 3.13 PDMS-AUNPS複合晶片上原位合成胜肽並結合CY5螢光分子進行檢測 44 第四章、結論 73 參考文獻 75

    1.Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 1963, 85 (14), 2149-2154.
    2.Frank, R., Spot-Synthesis - an Easy Technique for the Positionally Addressable, Parallel Chemical Synthesis on a Membrane Support. Tetrahedron 1992, 48 (42), 9217-9232.
    3.Frank, R., The SPOT synthesis technique - Synthetic peptide arrays on membrane supports - principles and applications. J Immunol Methods 2002, 267 (1), 13-26.
    4.Hilpert, K.; Winkler, D. F. H.; Hancock, R. E. W., Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2007, 2 (6), 1333-1349.
    5.Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.; Solas, D., Light-Directed, Spatially Addressable Parallel Chemical Synthesis. Science 1991, 251 (4995), 767-773.
    6.Pellois, J. P.; Zhou, X. C.; Srivannavit, O.; Zhou, T. C.; Gulari, E.; Gao, X. L., Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 2002, 20 (9), 922-926.
    7.Gao, X. L.; Zhou, X. C.; Gulari, E., Light directed massively parallel on-chip synthesis of peptide arrays with t-Boc chemistry. Proteomics 2003, 3 (11), 2135-2141.
    8.Cretich, M.; Damin, F.; Pirri, G.; Chiari, M., Protein and peptide arrays: Recent trends and new directions. Biomol Eng 2006, 23 (2-3), 77-88.
    9.Xu, Q.; Lam, K. S., Protein and Chemical Microarrays-Powerful Tools for Proteomics. J Biomed Biotechnol 2003, 2003 (5), 257-266.
    10.Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed 2001, 40 (11), 2004-2021.
    11.Thiele, A.; Zerweck, J.; Schutkowski, M., Peptide arrays for enzyme profiling. Methods Mol Biol 2009, 570, 19-65.
    12.Yeatman, T. J., A renaissance for SRC. Nat Rev Cancer 2004, 4 (6), 470-80.
    13.Toker, A.; Newton, A. C., Cellular signaling: Pivoting around PDK-1. Cell 2000, 103 (2), 185-188.
    14.Lu, P. J.; Zhou, X. Z.; Shen, M. H.; Lu, K. P., Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 1999, 283 (5406), 1325-1328.
    15.Li, T.; Liu, D. J.; Wang, Z. X., Screening Kinase Inhibitors with a Microarray-Based Fluorescent and Resonance Light Scattering Assay. Anal Chem 2010, 82 (7), 3067-3072.
    16.Han, X.; Shigaki, S.; Yamaji, T.; Yarnanouchi, G.; Mori, T.; Niidome, T.; Katayama, Y., A quantitative peptide array for evaluation of protein kinase activity. Anal Biochem 2008, 372 (1), 106-115.
    17.Uttamchandani, M.; Yao, S. Q., Peptide microarrays: Next generation biochips for detection, diagnostics and high-throughput screening. Curr Pharm Des 2008, 14 (24), 2428-2438.
    18.Collet, B. Y. M.; Nagashima, T.; Yu, M. S.; Pohl, N. L. B., Fluorous-based peptide microarrays for protease screening. J Fluorine Chem 2009, 130 (11), 1042-1048.
    19.Gershoni, J. M.; Roitburd-Berman, A.; Siman-Tov, D. D.; Tarnovitski Freund, N.; Weiss, Y., Epitope Mapping: The First Step in Developing Epitope-Based Vaccines. BioDrugs 2007, 21 (3), 145-156.
    20.Andresen, H.; Zarse, K.; Grotzinger, C.; Hollidt, J. M.; Ehrentreich-Forster, E.; Bier, F. F.; Kreuzer, O. J., Development of peptide microarrays for epitope mapping of antibodies against the human TSH receptor. J Immunol Methods 2006, 315 (1-2), 11-18.
    21.Min, D. H.; Mrksich, M., Peptide arrays: towards routine implementation. Curr Opin Chem Biol 2004, 8 (5), 554-558.
    22.Ahmed, S.; Mathews, A. S.; Byeon, N.; Lavasanifar, A.; Kaur, K., Peptide Arrays for Screening Cancer Specific Peptides. Anal Chem 2010, 82 (18), 7533-7541.
    23.Su, J.; Mrksich, M., Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew Chem Int Ed 2002, 41 (24), 4715-4718.
    24.Min, D. H.; Tang, W. J.; Mrksich, M., Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nat Biotechnol 2004, 22 (6), 717-723.
    25.Chen, H. H.; Sung, W. C.; Liang, S. S.; Chen, S. H., Functional fluorinated modifications on a polyelectrolyte coated polydimethylsiloxane substrate for fabricating antibody microarrays. Anal Chem 2010, 82 (18), 7804-13.
    26.Sung, W. C.; Chang, C. C.; Makamba, H.; Chen, S. H., Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem 2008, 80 (5), 1529-1535.
    27.McDonald, J. C.; Whitesides, G. M., Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 2002, 35 (7), 491-9.
    28.Liu, Y.; Fanguy, J. C.; Bledsoe, J. M.; Henry, C. S., Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Anal Chem 2000, 72 (24), 5939-44.
    29.Lahann, J.; Balcells, M.; Lu, H.; Rodon, T.; Jensen, K. F.; Langer, R., Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Anal Chem 2003, 75 (9), 2117-22.
    30.Yang, T.; Baryshnikova, O. K.; Mao, H.; Holden, M. A.; Cremer, P. S., Investigations of bivalent antibody binding on fluid-supported phospholipid membranes: the effect of hapten density. J Am Chem Soc 2003, 125 (16), 4779-84.
    31.Sung, W. C.; Chang, C. C.; Makamba, H.; Chen, S. H., Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem 2008, 80 (5), 1529-35.
    32.Sung, W. C.; Chen, H. H.; Makamba, H.; Chen, S. H., Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays. Anal Chem 2009, 81 (19), 7967-73.
    33.Chen, S. H.; Chen, H. H.; Sung, W. C.; Hang, S. S., Functional Fluorinated Modifications on a Polyelectrolyte Coated Polydimethylsiloxane Substrate for Fabricating Antibody Microarrays. Anal Chem 2010, 82 (18), 7804-7813.
    34.Lee, J. N.; Park, C.; Whitesides, G. M., Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 2003, 75 (23), 6544-6554.
    35.Schneider, M. H.; Tran, Y.; Tabeling, P., Benzophenone Absorption and Diffusion in Poly(dimethylsiloxane) and Its Role in Graft Photo-polymerization for Surface Modification. Langmuir 2011, 27 (3), 1232-1240.
    36.Wang, Y. L.; Lai, H. H.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L., Covalent micropatterning of poly(dimethylsiloxane) by photografting through a mask. Anal Chem 2005, 77 (23), 7539-7546.
    37.Nie, Z.; Kumacheva, E., Patterning surfaces with functional polymers. Nat Mater 2008, 7 (4), 277-290.
    38.Liu, S.; Zhu, T.; Hu, R.; Liu, Z., Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Phys Chem Chem Phys 2002, 4 (24), 6059-6062.
    39.Kim, Y. P.; Oh, Y. H.; Kim, H. S., Protein kinase assay on peptide-conjugated gold nanoparticles. Biosens Bioelectron 2008, 23 (7), 980-986.
    40.Huang, H.; Liu, Z.; Yang, X., Application of electrochemical impedance spectroscopy for monitoring allergen-antibody reactions using gold nanoparticle-based biomolecular immobilization method. Anal Biochem 2006, 356 (2), 208-14.
    41.Jena, B. K.; Raj, C. R., Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chemistry 2006, 12 (10), 2702-8.
    42.Li, Y. T.; Li, C. W.; Sung, W. C.; Chen, S. H., Heme Protein Assisted Dispersion of Gold Nanoparticle Multilayers on Chips: From Stabilization to High-Density Double-Stranded DNAs Fabricated in Situ for Protein/DNA Binding. Anal Chem 2009, 81 (10), 4076-4081.
    43.Qi, Z.; Honma, I.; Ichihara, M.; Zhou, H., Layer-by-Layer Fabrication and Characterization of Gold-Nanoparticle/Myoglobin Nanocomposite Films. Adv Funct Mater 2006, 16 (3), 377-386.
    44.Zhang, Q.; Xu, J. J.; Liu, Y.; Chen, H. Y., In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 2008, 8 (2), 352-357.
    45.Wu, W. Y.; Bian, Z. P.; Wang, W.; Wang, W.; Zhu, J. J., PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sens Actuators, B 2010, 147 (1), 298-303.
    46.Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. Anal Chem 1995, 67 (4), 735-743.
    47.Wang, Y. L.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L., Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 2006, 22 (6), 2719-2725.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE