簡易檢索 / 詳目顯示

研究生: 王羚原
Wang, Ling-Yuan
論文名稱: 金屬離子對洛克沙砷於氫氧化鋁(bayerite)表面吸/脫附之影響
The effects of metal ions on the adsorption/desorption of roxarsone on bayerite surface
指導教授: 陳婉如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 122
中文關鍵詞: 洛克沙砷吸附脫附氫氧化鋁
外文關鍵詞: roxarsone, adsorption, desorption, bayerite
相關次數: 點閱:59下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 洛克沙砷(Roxarsone)是一種帶有五價砷酸的芳香烴化合物,常被用於畜牧業,例如雞、豬等動物飼料的添加抗生素。這些有機砷主要藉由動物排泄進入到環境中,隨著糞便及製作有機肥料的過程中擴大汙染源,透過環境的移動及傳輸,不僅直接威脅到人體健康,洛克沙砷的代謝副產物如無機砷亦有可能帶來更大的危害。本研究主要是藉由洛克沙砷的吸脫附反應去探討其在環境中可能的傳輸機制。研究中主要以氫氧化鋁(bayerite, β-Al(OH)3)為吸附材料,並與文獻中以針鐵礦(goethite, FeOOH)為吸附劑進行比較,以堆肥常見的金屬陽離子Fe3+、Cu2+、Zn2+、Mn2+、Ca2+、Mg2+進行實驗探討金屬陽離子對於洛克沙砷於氫氧化鋁吸脫附的影響,而脫附實驗主要以氫氧根(OH-)和磷酸根(HPO42-)作為脫附劑。
    氫氧化鋁在酸性環境下固體表面帶正電,藉此吸附帶負電的洛克沙砷,在本研究的實驗範圍,50 µM洛克沙砷在1 g/L氫氧化鋁上的最大吸附量約在pH= 5左右,隨著溶液環境逐漸偏鹼,故吸附率隨著pH上升而減少,直到氫氧化鋁的等電點pHpzc≈ 9.5而吸附率降到最低。當pH大於10,洛克沙砷之吸附反而隨著pH上升而升高,與洛克沙砷吸附於針鐵礦隨pH上升而下降的情形迥異。實驗推測在鹼性環境下氫氧化鋁溶解成Al(OH)4-,高pH值環境中存在膠體粒子,混合靜置過後可分為三層:溶液層、膠羽層以及固體層,而這也是與針鐵礦最大的相異之處。當加入不同的金屬離子,會提高洛克沙砷的吸附量,並且減少磷酸根與氫氧根的脫附,在六個測試的金屬離子當中,Cu2+ 與 Fe3+ 的效果最為明顯。在脫附結果中,普遍看出磷酸根的脫附速度優於氫氧根,但由於膠羽對於pH的不穩定性,導致後續產生再吸附現象。添加氫氧根脫附時,溶液pH值卻下降,數個小時後才逐漸回升,此現象有可能是膠羽產生變化的影響,可藉此預測環境中的氫氧化鋁膠體粒子對於酸鹼和汙染物擁有良好的緩衝能力,然而此現象亦說明了洛克沙砷在環境中可隨著吸附於膠羽上移動。

    Roxarsone (4-Hydroxy-3-nitrobenzenearsonic, ROX) is an aromatic hydrocarbon compound with a pentavalent arsenic acid. It is widely used as feed additives for livestock, such as chickens, pigs, and turkeys to promote growth and control diseases. This arsenic containing pollutant could be discharged into the environment through agricultural application of animal manure and pose potential threats to our environment. ROX in the environment may be transported or degraded into metabolic byproducts with higher toxicity. In this study, the influence of pH and metal ions (Cu2+, Fe3+, Zn2+, Mn2+, Ca2+ and Mg2+) on the adsorption of ROX were investigated in order to understand their mobility in the environment. After adsorption, the competitive anions, phosphate and hydroxide, which are common substances in the environment and potential competing anions for ROX, were added to replace ROX from bayerite/goethite. The results showed the surface of bayerite was positive charged and had very strong affinity to negatively charged ROX in acidic condition. When the ROX’s loading was 50 µM and pH was less than 6, it can be all removed by 1 g/L bayerite. With increasing pH, the ROX adsorption on bayerite decreased and reached the lowest adsorption at pH 9.5 which is the pHpzc of bayerite. Surprisingly, when pH was higher than 10, both ROX and bayerite were negatively charged, but the amount of adsorption rebounded to 30-55%. It was observed that bayerite dissolute into flocs or flakes in the solution at pH > 10 which was very different from its solid suspension at lower or neutral pH. In the desorption experiment, phosphate was more efficient than hydroxide to replace ROX from goethite/bayerite. The results demonstrated that the presence of metal ions enhanced ROX adsorption and decreased ROX desorption, and the effect from Fe3+ and Cu2+ was more pronounced. However, the released ROX readsorbed on bayerite surface in a few hours when phosphate was the replacing agent. The re-adsorption of the ROX on bayerite might result from the fact that phosphate caused Al3+ ion dissolution and the Al3+ ions tend to associate with hydroxide ion and decrease the pH. Comparing the results with bayerite and goethite, it suggested that the flocs formation in the reaction with bayerite may influence the pH, and that the colloidal particles of bayerite formed in strong basic condition may play an important role on the fate of ROX in the environment.

    摘要 I ABSTRACT II 誌謝 IV CONTENTS VI TABLE CONTENTS X FIGURE CONTENTS XII Chapter 1 INTRODUCTION 1 Chapter 2 LITERATURE REVIEW 3 2.1 Roxarsone 3 2.1.1 Physical and chemical properties of roxarsone 3 2.1.2 Application and movement of roxarsone 5 2.1.3 Toxicity of roxarsone 9 2.1.4 Influences of roxarsone in the environment 12 2.2 Aluminum hydroxide 16 2.2.1 Characteristics of aluminum hydroxide 16 2.2.2 Surface function groups of aluminum hydroxide 20 2.2.3 Surface complexation reaction of aluminum hydroxide 24 2.3 Goethite 26 2.3.1 Characteristics of goethite 26 2.3.2 Surface function groups of goethite 27 2.3.3 Surface complexation reaction of goethite 31 2.4 Adsorption and desorption isotherm 34 2.4.1 Langmuir isotherm 34 2.4.2 Freundlich isotherm 35 2.4.3 BET isotherm 35 2.4.4 Freundlich desorption equations 37 2.5 Effect of metal ions on adsorption/desorption 38 2.5.1 Complete of metal ions 38 2.5.2 Adsorption of inorganic arsenic 39 Chapter 3 MATERIALS AND METHODS 42 3.1 Experimental processes 42 3.2 Materials 43 3.2.1 Chemicals 43 3.2.2 Goethite 44 3.2.3 Bayerite 45 3.3 Method 46 3.3.1 Pre-adsorption experiment 46 3.3.2 Adsorption envelope with metal ions at different pH 46 3.3.3 Desorption kinetics 47 3.3.4 X-ray diffraction and BET analysis 47 3.4 The influence of metal ions on adsorption and desorption 50 3.4.1 Metal ion selection 50 3.4.2 The influence of the adsorption and desorption in presence of metal 51 3.5 Analysis method 51 3.5.1 Roxarsone analyze 51 Chapter 4 RESULT AND DISCUSSION 53 4.1 Adsorbent characterization 53 4.1.1 X-ray diffraction (XRD) 53 4.1.2 BET surface area 55 4.2 ROX adsorption on bayerite surface 57 4.2.1 Effect of background ion 57 4.2.2 Effect of metal ion loading 59 4.2.3 Effect of aging 62 4.3 ROX desorption from bayerite surface 64 4.4 ROX desorption from goethite surface 76 4.5 Comparison between ROX adsorption/desorptin on bayerite and goethite 89 4.5.1 Adsorption Envelope 89 4.5.2 Adsorption Kinetics 91 4.5.3 Desorption 92 4.5.4 Change of particle size and amount in aluminum 92 Chapter 5 CONCLUSIONS AND SUGGESTIOS 99 5.1 Conclusions 99 5.2 Suggestions 101 Reference 102 APPENDIX 121

    99/29/EC, C. D. (1999). "Council Directive 99/29/EC on the Undesirable Substances and Products in Animal Nutrition." Official Journal of the European Communities. Retrieved 4, 115.

    Abdo, K. M., Elwell, M. R., Montgomery, C. A., Thompson, M. B., Thompson, R. B. and Prejean, J. D. (1989). Toxic responses in F344 rats and B6C3F mice given roxarsone in their diets for up to 13 weeks. Toxicol Lett. 45(1): 55-66

    Addai-Mensah, J., Dawe, J., Hayes, R., Prestidge, C. and Ralston, J. (1998). The unusual colloid stability of gibbsite at high pH. 203(1): 115-121

    Adeli, A., Sistani, K. R., Tewolde, H. and Rowe, D. E. (2007). Broiler litter application effects on selected trace elements under conventional and no-till systems. Soil Sci. 172(5): 349-365

    Alwitt, R. S. (1976). Aluminium-Water System. New York.

    Arai, Y., Elzinga, E. J. and Sparks, D. L. (2001). X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide–water interface. J Colloid and Interf Sci. 235(1): 80-88

    Arai, Y., Lanzirotti, A., Sutton, S., Davis, J. A. and Sparks, D. L. (2003). Arsenic speciation and reactivity in poultry litter. Environ Sci Technol. 37(18): 4083-4090

    Asci, Y., Acikel, U. and Acikel, Y. S. (2012). Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant. Environ Technol. 33(16): 1857-1868

    Ashjaei, S. (2010). Arsenic fractionation, plant uptake and its concentrations in runoff from poultry litter-amended pastures.

    Ashjaei, S., Miller, W. P., Cabrera, M. L. and Hassan, S. M. (2011). Arsenic in soils and forages from poultry litter-amended pastures. Int J Environ Res Public Health. 8(5): 1534-1546

    Barrow, N. J., Bowden, J. W., Posner, A. M. and Quirk, J. P. (1981). Describing the adsorption of copper, zinc and lead on a variable charge mineral surface. Aust J Soil Res. 19(4): 309-321

    Bednar, A. J., Garbarino, J. R., Ferrer, I., Rutherford, D. W., Wershaw, R. L., Ranville, J. F. and Wildeman, T. R. (2003). Photodegradation of roxarsone in poultry litter leachates. Sci Total Environ. 302(1-3): 237-245

    Bi, S., Wang, C., Cao, Q. and Zhang, C. (2004). Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: correlations between the “Core-links” model and “Cage-like” Keggin-Al 13 model. Coordin Chem Rev. 248(5): 441-455

    Bleam, W. F. and McBride, M. B. (1985). Cluster formation versus isolated-site adsorption. A study of Mn (II) and Mg (II) adsorption on boehmite and goethite. J Colloid and Interf Sci. 103(1): 124-132

    Blesa, M. A., Magaz, G., Salfity, J. A. and Weisz, A. D. (1997). Structure and reactivity of colloidal metal oxide particles immersed in water. Solid state ionics. 101(1235-1241

    Boily, J. F., Lützenkirchen, J., Balmès, O., Beattie, J. and Sjöberg, S. (2001). Modeling proton binding at the goethite (α-FeOOH)–water interface. Colloid Surface A. 179(1): 11-27

    Brown, B. L., Slaughter, A. D. and Schreiber, M. E. (2005). Controls on roxarsone transport in agricultural watersheds. Appl Geochem. 20(1): 123-133

    Budavari, S. (1996). The Merck Index. Whitehouse Station, NJ, Merck and Co., Inc.

    Chen, W. R. and Huang, C. H. (2012). Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. J Hazard Mater. 227(378-385

    Chiou, P. W. S., Chen, K. L. and Yu, B. (1997). Effects of roxarsone on performance, toxicity, tissue accumulation and residue of eggs and excreta in laying hens. J Sci Food Agr. 74(2): 229-236

    Codling, E. E., Chaney, R. L. and Mulchi, C. L. (2008). Effects of broiler litter management practices on phosphorus, copper, zinc, manganese, and arsenic concentrations in Maryland Coastal Plain soils. Commun Soil Sci Plan. 39(7-8): 1193-1205

    Cornell, R. M., Posner, A. M. and Quirk, J. P. (1974). Crystal morphology and the dissolution of goethite. J Inorg Nucl Chem. 36(9): 1937-1946

    Cornell, R. M. and Schwertmann, U. (2006). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley and Sons.

    Cortinas, I., Field, J. A., Kopplin, M., Garbarino, J. R., Gandolfi, A. J. and Sierra-Alvarez, R. (2006). Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environ Sci Technol. 40(9): 2951-2957

    Council of agriculture, R. O. C. T. (2014). Taiwan Agricultural Statistics Yearbook.

    Cullen, W. R. and Reimer, K. J. (1989). Arsenic speciation in the environment. Chem Rev. 89(4): 713-764

    Cullity, B. D. (2001). SR Stock Elements of X-ray diffraction.

    Davis, J. A., James, R. O. and Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J Colloid and Interf Sci. 63(3): 480-499

    Denver, J. M. (2004). Water Quality in the Delmarva Peninsula, Delaware, Maryland, and Virginia, 1999-2001, US Department of the Interior, US Geological Survey.

    Edmonds, M. S. and Baker, D. H. (1986). Toxic effects of supplemental copper and roxarsone when fed alone or in combination to young-pigs. J Anim Sci. 63(2): 533-537

    Elkhatib, E. A., Mahdy, A. M., Saleh, M. E. and Barakat, N. H. (2007). Kinetics of copper desorption from soils as affected by different organic ligands. Int J Environ Sci Te. 4(3): 331-338

    FDA (2011). "Pfizer will voluntarily suspend sale of animal drug 3-nitro." http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm258342.htm. Retrieved June 8.

    Fendorf, S., Eick, M. J., Grossl, P. and Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite .1. Surface structure. Environ Sci Technol. 31(2): 315-320

    Fisher, D. J., Yonkos, L. T. and Staver, K. W. (2015). Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environ Sci Technol. 49(4): 1999-2012

    Forsyth, J. B., Hedley, I. G. and Johnson, C. E. (1968). The magnetic structure and hyperfine field of goethite (α-FeOOH). J Phys C Solid State. 1(1): 179

    Garbarino, J. R., Bednar, A. J., Rutherford, D. W., Beyer, R. S. and Wershaw, R. L. (2003). Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environ Sci Technol. 37(8): 1509-1514

    Goldberg, S., Forster, H. S. and Godfrey, C. L. (1996). Molybdenum adsorption on oxides, clay minerals, and soils. Soil Sci Soc Am J. 60(2): 425-432

    Goldberg, S., Forster, H. S. and Heick, E. L. (1993). Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects. Soil Sci Soc Am J. 57(3): 704-708

    Goldsztaub, S. (1932). Structure cristalline de la goethite. CR Acad Sci. 58(6-76

    Golikova, E. V., Ioganson, O. M., Duda, L. V., Osmolovskii, M. G., Yanklovich, A. I. and Chernoberezhskii, Y. M. (1998). Studies of the Aggregation Stability of Aqueous Dispersions of a-Fe2O3, a-FeOOH, and Cr2O3 under Conditions of the Isoelectric State. 60(2): 188-193

    Granados-Correa, F., Corral-Capulin, N. G., Olguin, M. T. and Acosta-Leon, C. E. (2011). Comparison of the Cd(II) adsorption processes between boehmite (gamma-AlOOH) and goethite (alpha-FeOOH). Chem Eng J. 171(3): 1027-1034

    Gregory, D. G., Vanhooser, S. L. and Stair, E. L. (1995). Light and electron-microscopic lesions in peripheral-nerves of broiler-chickens due to roxarsone and lasalocid toxicoses. Avian Dis. 39(2): 408-416

    Han, F. X., Kingery, W. L., Selim, H. M., Gerard, P. D., Cox, M. S. and Oldham, J. L. (2004). Arsenic solubility and distribution in poultry waste and long-term amended soil. Sci Total Environ. 320(1): 51-61

    Hancock, T. (2002). Source, transport, and fate of arsenic in the Pocomoke River Basin, a poultry dominated Chesapeake Bay watershed. Arsenic in the Environment, Denver, CO. USGS Workshop
    on Arsenic in the Environment, Denver, CO.

    Hancock, T. C., Denver, J. M., Riedel, G. F. and Miller, C. V. (2001). Source, transport, and fate of arsenic in the pocomoke river basin, a poultry dominated chesapeake bay watershed. USGS Workshop
    on Arsenic in the Environment, Denver, CO.

    Harvey, M. C., Schreiber, M. E., Rimstidt, J. D. and Griffith, M. M. (2006). Scorodite dissolution kinetics: implications for arsenic release. Environ Sci Technol. 40(21): 6709-6714

    Hayes, K. F., Papelis, C. and Leckie, J. O. (1988). Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interf Sci. 125(2): 717-726

    Hiemstra, T. and Van Riemsdijk, W. H. (1991). Physical chemical interpretation of primary charging behaviour of metal (hydr) oxides. Colloid Surface. 59(7-25

    Hiemstra, T., Van Riemsdijk, W. H. and Bruggenwert, M. G. M. (1987). Proton adsorption mechanism at the gibbsite and aluminium oxide solid/solution interface.

    Hiemstra, T. and VanRiemsdijk, W. H. (1996). A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interf Sci. 179(2): 488-508

    Hiemstra, T., Yong, H. and Van Riemsdijk, W. H. (1999). Interfacial charging phenomena of aluminum (hydr) oxides. Langmuir. 15(18): 5942-5955

    Holt, P. K., Barton, G. W. and Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere. 59(3): 355-367

    Hosseinpur, A. and Pashamokhtari, H. (2008). Impact of treated sewage sludge application on phosphorus release kinetics in some calcareous soils. Environ Geol. 55(5): 1015-1021

    Hsi, C. K. D. and Langmuir, D. (1985). Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. Geochim Cosmochim Ac. 49(9): 1931-1941

    Hsu, P. H. (1966). Effect of salts on the formation of bayerite versus pseudo-boehmite. Soil Sci. 103(101-110

    Hsu, P. H. (1989). Aluminum Hydroxides and Oxyhydroxides.

    Huang, L. X., Yao, L. X., He, Z. H., Zhou, C. M., Li, G. L., Yang, B. M. and Li, Y. F. (2013). Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure. Food Addit Contam A. 30(9): 1546-1555

    Jackson, B. P. and Bertsch, P. M. (2001). Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environ Sci Technol. 35(24): 4868-4873

    Jackson, B. P., Bertsch, P. M., Cabrera, M. L., Camberato, J. J., Seaman, J. C. and Wood, C. W. (2003). Trace element speciation in poultry litter. J Environ Qual. 32(2): 535-540

    Jackson, B. P. and Miller, W. P. (1999). Soluble arsenic and selenium species in fly ash organic waste-amended soils using ion chromatography inductively coupled plasma mass spectrometry. Environ Sci Technol. 33(2): 270-275

    Jackson, B. P., Seaman, J. C. and Bertsch, P. M. (2006). Fate of arsenic compounds in poultry litter upon land application. Chemosphere. 65(11): 2028-2034

    Kaiser, K. and Guggenberger, G. (2003). Mineral surfaces and soil organic matter. Eur J Soil Sci. 54(2): 219-236

    Karamalidis, A. K. and Dzombak, D. A. (2011). Surface Complexation Modeling: Gibbsite, John Wiley & Sons.

    Kavanagh, B. V., Posner, A. M. and Quirk, J. P. (1975). Effect of polymer adsorption on the properties of the electrical double layer. Faraday Discuss Chem Soc. 59(242-249

    Kawalek, J., Carson, M., Conklin, S., Lancaster, V., Howard, K., Ward, J., Farrell, D., Myers, M., Swain, H. and Jeanettes, P. (2011). Provide data on various arsenic species present in broilers treated with roxarsone: comparison with untreated birds. Final report on Study 275.30. 2011; US Food and Drug Administration: Laurel, MD, USA, 2011.

    Kerr, K. B., Thompson, O. L. and Cavett, J. W. (1963). Toxicity of an organic arsenical, 3-nitro-4-hydroxyphenylarsonic acid .1. acute and subacute toxicity. Toxicol Appl Pharmacol. 5(4): 507

    Korte, N. E. and Fernando, Q. (1991). A Review of Arsenic(Iii) in Groundwater. Crit Rev Env Contr. 21(1): 1-39

    Kwon, J. H., Wilson, L. D. and Sammynaiken, R. (2014). Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support. Materials. 7(3): 1880-1898

    Kyle, J. H., Posner, A. M. and Quirk, J. P. (1975). Kinetics of isotopic exchange of phosphate adsorbed on gibbsite. J Soil Sci. 26(1): 32-43

    Ladeira, A. C. Q., Ciminelli, V. S. T., Duarte, H. A., Alves, M. C. M. and Ramos, A. Y. (2001). Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite. Geochim Cosmochim Ac. 65(8): 1211-1217

    Lasky, T., Sun, W., Kadry, A. and Hoffman, M. K. (2004). Mean total arsenic concentrations in chicken 1989-2000 and estimated exposures for consumers of chicken. Environ Health Perspect. 112(1): 18-21

    Lefevre, G. and Fedoroff, M. (2002). Synthesis of bayerite (beta-Al(OH)(3)) microrods by neutralization of aluminate ions at constant pH. Mater Lett. 56(6): 978-983

    Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B. and Bollinger, J. C. (2002). Arsenic adsorption onto pillared clays and iron oxides. J Colloid Interface Sci. 255(1): 52-58

    Ler, A. and Stanforth, R. (2003). Evidence for surface precipitation of phosphate on goethite. Environ Sci Technol. 37(12): 2694-2700

    Levan, M. D. and Vermeulen, T. (1981). Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J Phys Chem-Us. 85(22): 3247-3250

    Li, J., Nakamura, M., Shirai, T., Matsumaru, K., Ishizaki, K. and Ishizaki, C. (2005). Hydrolysis of aluminum nitride powders in moist air. 7(1): 37-42

    Li, Z. Y., Li, J. Y., Xu, R. K., Hong, Z. N. and Liu, Z. D. (2015). Streaming potential method for characterizing the overlapping of diffuse layers of the electrical double layers between oppositely charged particles. Colloid Surface A. 478(22-29

    Lorenzen, L., Vandeventer, J. S. J. and Landi, W. M. (1995). Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner Eng. 8(4-5): 557-569

    Lumsdon, D. G. and Evans, L. J. (1994). Surface complexation model parameters for goethite (α-FeOOH). J Colloid Interf Sci. 164(1): 119-125

    Madrid, L., Diaz, E., Cabrera, F. and Arambarri, P. (1983). Use of a three‐plane model to describe charge properties of some iron oxides and soil clays. J Soil Sci. 34(1): 57-67

    Makris, K. C., Salazar, J., Quazi, S., Andra, S. S., Sarkar, D., Bach, S. B. and Datta, R. (2008). Controlling the fate of roxarsone and inorganic arsenic in poultry litter. J Environ Qual. 37(3): 963-971

    Manning, B. A. and Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J. 60(1): 121-131

    Manning, B. A. and Goldberg, S. (1997). ARSENIC(III) AND ARSENIC(V) ADSORPTION ON THREE CALIFORNIA SOILS. Soil Sci. 162(12): 886-895

    Mascher, R., Lippmann, B., Holzinger, S. and Bergmann, H. (2002). Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 163(5): 961-969

    Matschullat, J. (2000). Arsenic in the geosphere--a review. Sci Total Environ. 249(1-3): 297-312

    Meng, X., Korfiatis, G. P., Bang, S. and Bang, K. W. (2002). Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett. 133(1): 103-111

    Meng, X. G., Bang, S. and Korfiatis, G. P. (2000). Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 34(4): 1255-1261

    Moore, P. A., Daniel, T. C., Gilmour, J. T., Shreve, B. R., Edwards, D. R. and Wood, B. H. (1998). Decreasing metal runoff from poultry litter with aluminum sulfate. J Environ Qual. 27(1): 92-99

    Morrison, J. L. (1969). Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. J Agric Food Chem. 17(6): 1288-1290

    Nachman, K. E., Baron, P. A., Raber, G., Francesconi, K. A. and Navas-Acien, A. (2013). Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample. Environ Health Persp. 121(7): 818-824

    Naono, H., Sonoda, J., Oka, K. and Hakuman, M. (1993). Evaluation of Microporous Texture of Undecomposed and Decomposed β-FeOOH Fine Particles by Means of Adsorption Isotherms of Nitrogen Gas and Water Vapor.

    Pavkov, M. and Goessler, W. (2001). Determination of Organoarsenic Compounds in Finishing Chicken Feed and Chicken Litter by HPLC-ICP-MS, Arsenic.

    Poon, L., Younus, S. and Wilson, L. D. (2014). Adsorption study of an organo-arsenical with chitosan-based sorbents. J Colloid Interface Sci. 420(136-144

    Prodromou, K. P. and Pavlatouve, A. S. (1995). Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clay Clay Miner. 43(1): 111-115

    Rahnemaie, R., Hiemstra, T. and van Riemsdijk, W. H. (2006). Inner-and outer-sphere complexation of ions at the goethite–solution interface. J Colloid Interf Sci. 297(2): 379-388

    Rosal, C. G., Momplaisir, G. M. and Heithmar, E. M. (2005). Roxarsone and transformation products in chicken manure: Determination by capillary electrophoresis-inductively coupled plasma-mass spectrometry. Electrophoresis. 26(7-8): 1606-1614

    Rosenqvist, J., Persson, P. and Sjöberg, S. (2002). Protonation and charging of nanosized gibbsite (α-Al (OH) 3) particles in aqueous suspension. Langmuir. 18(12): 4598-4604

    Rutherford, D. W., Bednar, A. J., Garbarino, J. R., Needham, R., Staver, K. W. and Wershaw, R. L. (2003). Environmental fate of roxarsone in poultry litter. part II. mobility of arsenic in soils amended with poultry litter. Environ Sci Technol. 37(8): 1515-1520

    Ruthven, D. M. (1984). Principles of Adsorption and Adsorption Processes, John Wiley and Sons.

    Schwertmann, U. and Cornell, R. M. (2000). Iron Oxides in the Laboratory: Preparation and Characterization, John Wiley & Sons.

    Schwertmann, U. and Cornell, R. M. (2008). Iron Oxides in the Laboratory, John Wiley and Sons.

    Schwertmann, U. and Stanjek, H. (1998). Stirring effects on properties of A1 goethite formed from ferrihydrite. Clay Clay Miner. 46(3): 317-321

    Shuman, L. M. (1977). Adsorption of Zn by Fe and Al hydrous oxides as influenced by aging and pH. Soil Sci Soc Am J. 41(4): 703-706

    Silbergeld, E. K. and Nachman, K. (2008). The environmental and public health risks associated with arsenical use in animal feeds. Ann Ny Acad Sci. 1140(346-357

    Sims, J. T. and Luka-McCafferty, N. J. (2002). On-farm evaluation of aluminum sulfate (alum) as a poultry litter amendment: Effects on litter properties. J Environ Qual. 31(6): 2066-2073

    Sims, J. T. and Wolf, D. C. (1994). Poultry waste mana? ement: agricultural and environmental issues. 52(1): 2-72

    Smedley, P. L. and Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 17(5): 517-568

    Stolz, J. F., Perera, E., Kilonzo, B., Kail, B., Crable, B., Fisher, E., Ranganathan, M., Wormer, L. and Basu, P. (2007). Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ Sci Technol. 41(3): 818-823

    Swallow, K. C., Hume, D. N. and Morel, F. M. (1980). Sorption of copper and lead by hydrous ferric oxide. Environ Sci Technol. 14(11): 1326-1331

    Tipping, E. and Cooke, D. (1982). The effects of adsorbed humic substances on the surface charge of goethite (α-FeOOH) in freshwaters. Geochim Cosmochim Ac. 46(1): 75-80

    Toor, G. S., Haggard, B. E., Reiter, M. S., Daniel, T. C. and Donoghue, A. M. (2007). Phosphorus solubility in poultry litters and granulates: Influence of litter treatments and extraction ratios. T Asabe. 50(2): 533-542

    Wallinga, D. (2006). Public health advocate. Prev Vet Med. 73(2-3): 221-228

    Wang, F. M., Chen, Z. L., Zhang, L., Gao, Y. L. and Sun, Y. X. (2006). Arsenic uptake and accumulation in rice (Oryza sativa l.) at different growth stages following soil incorporation of roxarsone and arsanilic acid. Plant Soil. 285(1-2): 359-367

    Wang, L. Y., Wang, S. W. and Chen, W. R. (2016). Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: Significance of the presence of metal ions. Chemosphere. 152(423-430

    Warman, P. R. and Cooper, J. M. (2000). Fertilization of a mixed forage crop with fresh and composted chicken manure and NPK fertilizer: Effects on soil and tissue Ca, Mg, S, B, Cu, Fe, Mn and Zn. Can J Soil Sci. 80(2): 345-352

    Warman, P. R. and Termeer, W. C. (2005). Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: Ca, Mg, S, Fe, Mn, Cu, Zn and B content of crops and soils. Bioresource Technol. 96(9): 1029-1038

    Weerasooriya, R., Tobschall, H. J., Seneviratne, W. and Bandara, A. (2007). Transition state kinetics of Hg (II) adsorption at gibbsite–water interface. J Hazard Mater. 147(3): 971-978

    Weerasooriya, R., Tobschall, H. J., Wijesekara, H. K. D. K., Arachchige, E. K. I. A. U. K. and Pathirathne, K. A. S. (2003). On the mechanistic modeling of As (III) adsorption on gibbsite. Chemosphere. 51(9): 1001-1013

    Weerasooriya, R., Tobschall, H. J., Wijesekara, H. K. D. K. and Bandara, A. (2004). Macroscopic and vibration spectroscopic evidence for specific bonding of arsenate on gibbsite. Chemosphere. 55(9): 1259-1270

    Windholz, M. and Budavari, S. (1983). The Merck Index. Rahway, NJ: Merck & Co.

    Xu, H., Allard, B. and Grimvall, A. (1991). Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Poll. 57(1): 269-278

    Yang, X., Sun, Z., Wang, D. and Forsling, W. (2007). Surface acid–base properties and hydration/dehydration mechanisms of aluminum (hydr) oxides. J Colloid and Interf Sci. 308(2): 395-404

    Yates, D. E. and Healy, T. W. (1975). Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces. J Colloid Interf Sci. 52(2): 222-228

    白崢鈺, 烏春梅, 江家菱, 許國恩, 朱敬平 and 鍾裕仁 (2012). 以化學混凝與離子交換回收工業廢水正磷酸鹽之效能比較. 115): 27-33

    下載圖示 校內:2020-12-30公開
    校外:2020-12-30公開
    QR CODE