簡易檢索 / 詳目顯示

研究生: 謝會龍
Nugroho, Rusli Adi
論文名稱: 利用玻璃纖維作為TiO2薄膜載體以製作可撓式染料敏化太陽能電池
A Flexible Dye-Sensitized Solar Cell with Fiber Glass for Titanium Dioxide Film Coating
指導教授: 吳文騰
Wu, Wen-Teng
共同指導教授: 李玉郎
Lee, Yu-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 101
中文關鍵詞: 可撓式染料敏化太陽能電池再生能源可撓式玻璃纖維高溫處理
外文關鍵詞: A flexible dye-sensitized solar cells, renewable energy source, fiber glass, high temperature treatment
相關次數: 點閱:112下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應全球越來越注重環保概念影響之下,近年來染料敏化太陽能電池 (DSSCs)不僅價格低廉,高效率功能轉換以及符合環保科技已成為工程領域及學術研究最為熱門的研究之一。觀察現今研究發現,利用輕量化 加上可撓式的材質應用在可撓式染料敏化太陽能電池也逐漸成為熱門研究。為了符合商業化的需求,我們創造全新的可撓式染料敏化太陽能電池,不僅利用輕量化以及可撓式的特性外,更是能在高溫下去處理二氧化矽的燒結。
    本論文應用以及使用玻璃纖維材質包覆的二氧化矽當作電極,在TCO裡噴濺白金當作此電池的對電極,而D149和N179染料敏化劑以及MPN (3-methoxypropionitrile) 電解液當作有機的氧化還原反應也是用來完成包覆著玻璃纖維的可撓式染料敏化太陽能電池。
    光電流 – DSSC的電壓特性結果呈現為Jsc: 7.196 mA/m2, Voc: 0.65 Volt, FF: 0.517 以及在低於1 sun illumination (100mW/cm2)之下有2.421%的效果。本論文實驗指出使用玻璃纖維材質在高溫作業上產生可撓式染料敏化太陽能電池是可行的。

    Dye-sensitized solar cells (DSSCs) have been promoted in the decades due to their low cost, highly efficient conversion of visible light into electricity and also an eco-friendly production. Recently, a flexible dye-sensitized solar cell using light weighting and bendable materials also attract a lot of attention. In order to meet the requirements of commercial applications, we develop flexible dye-sensitized solar cells, which are light weighting and bendable materials with high temperature treatment for sintering process of TiO2.
    In the present study, we used TCO (transparent conducting oxides) glass and TiO2 paste which was coating in fiber glass as a working electrode. The platinum – sputtered in TCO glass was used as counter electrode for this cell. D149 and N719 dye sensitizers and MPN (3-methoxypropionitrile) electrolyte as organic redox solution were also used to complete the fabrication of dye-sensitized solar cell with fiber glass.
    The Photocurrent – Voltage characterization of DSSC give the result with Jsc: 7.196 mA/m2, Voc: 0.65 Volt, FF: 0.517 and 2.421 % efficiency under 1 sun illumination (100mW/cm2). This result indicates that using fiber glass as material for produce flexible dye-sensitized solar cell in high temperature treatment is possible.

    ABSTRACT i 摘要 ii ACKNOWLEDGMENT iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER ONE INTRODUCTION 1 1.1. Research Background 1 1.2. Research Motivation 3 CHAPTER TWO LITERATURE REVIEW 5 2.1. Titanium Dioxide 5 2.1.1. Titanium Dioxide Properties 5 2.1.2. The Evolution of Dye-Sensitized Solar Cells 7 2.1.3. CCIC Titanium Dioxide 16 2.2. Fiber Glass Properties and Application 16 2.3. Dye-Sensitized Solar Cells 20 2.3.1. The Development of Dye-Sensitized Solar Cells 20 2.3.2. Operating Principles of Dye-Sensitized Solar Cells 32 2.3.3. Composition of Dye-Sensitized Solar Cells 38 2.3.4. Characterization of Dye-Sensitized Solar Cells 46 2.4. Flexible Dye-Sensitized Solar Cells 48 CHAPTER THREE MATERIALS and METHODS 51 3.1. Chemical and Materials 51 3.1.1. Chemicals 51 3.1.2. Materials 52 3.2. Experimental Instruments 52 3.3. Experimental Analysis 56 3.4. Experimental Methods 58 3.4.1. Pretreatment of FTO Conducting Glass 58 3.4.2. Screen Printing Method 58 3.4.3. Preparation Photoelectrode for n-DSSC 58 3.4.4 Preparation Photoelectrode for Fiber Glass-DSSC 59 3.4.5. Preparation Photoelectrode for Fiber Glass-DSSC DSSC with blocking layer 59 3.4.6. Preparation Photoelectrode for Separated Sintering Analysis 59 3.4.7. Preparation of Counter Electrode with Pt-Sputtering 60 3.4.8. Assembling the Cells 60 CHAPTER FOUR RESULTS and DISCUSSIONS 61 4.1. Morphology of Titanium Dioxide Nanoparticles Film for Three Different Thickness of Fiber Glass 61 4.2. The Thickness Effect of Fiber Glass on the Performance of DSSCs 65 4.3. The Influence of Dye-Sensitizer on the Performance of Fiber Glass DSSCs 72 4.4. An Enhancement of Fiber Glass DSSCs by Increasing the Thickness of TiO2 Film Layer 76 4.5. The Influence of Blocking Layer (Precursor) on the Performance of Fiber Glass DSSCs 79 CHAPTER FIVE CONCLUSIONS and SUGGESTIONS 87 5.1. Conclusions 87 5.2. Suggestions 88 REFERENCES 90

    1. REN21, Renewables 2010 Global Status Report. 2010.
    2. Laboratory, N.R.E., Geothermal Technologies. http://www.nrel.gov/geothermal/, 2009.
    3. Abrams, N.M., Efficiency Enhancement in Dye-Sensitized Solar Cells Through Light Manipulation. A&I.(Publication No. AAT 3202471), 2005.
    4. Bolton, J.R., Solar Fuels. Science, 1978. 202(4369): p. 705-711.
    5. Fan, K., Peng, T., Chen, J., Dai, K., Effects of Tetrabutoxytitanium on Photoelectrochemical Properties of Plastic-Based Tio2 Film Electrodes for Flexible Dye-Sensitized Solar Cells. Journal of Power Sources, 2011. 196(5): p. 2939-2944.
    6. Song, M.Y., Kim, D., Ihn, K., Jo, S., Kim, D., Electrospun TiO2 Electrodes for Dye-Sensitized Solar Cells. Nanotechnology, 2004. 15(12): p. 1861-1865.
    7. O'Regan, B. and M. Grätzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 1991. 353: p. 737 –740.
    8. Chiba, Y., Islam, A., Watanabe, Y,. Komiya, R., Koide, N., Han. L., Dye-Sensitized Solar Cells With Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics, Part 2: Letters, 2006. 45: p. 638-640.
    9. Sommeling, P., M. Späth, and J.A.M.v. Roosmalen, Dye-Sensitized Nanocrystalline TiO2 Solar Cells on Flexible Substrates. ECN Solar and Wind Energy, 1998.
    10. Chen, L., Tan, W., Zhang, J., Zhou, X., Zhang, X., Lin, Y., Fabrication of High Performance Pt Counter Electrodes on Conductive Plastic Substrate for Flexible Dye-Sensitized Solar Cells. Electrochimica Acta, 2010. 55(11): p. 3721-3726.
    11. Weerasinghe, H.C., Sirimanne, P. M., Franks, G. V., Simon, G. P., Cheng, Y. B., Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010. 213(1): p. 30-36.
    12. Yamaguchi, T., Tobe, N., Matsumoto, D., Nagai, T., Arakawa, H., Highly Efficient Plastic-Substrate Dye-Sensitized Solar Cells With Validated Conversion Efficiency of 7.6%. Solar Energy Materials and Solar Cells, 2010. 94(5): p. 812-816.
    13. Lindström, H., Holmberg, A., Magnusson, E., Lindquist, S., Malmqvist, L., Hagfeldt, A., A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates. Nano Letters, 2001. 1(2): p. 97-100.
    14. Lai, M.-H., Tubtimtae, A., Lee, M., Wang, G., ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer. International Journal of Photoenergy, 2010. 2010.
    15. Yang, L., Wu, L., Wu, M., Xin, G., Lin, H., Ma, T., High-Efficiency Flexible Dye-Sensitized Solar Cells Fabricated by a Novel Friction-Transfer Technique. Electrochemistry Communications, 2010. 12(7): p. 1000-1003.
    16. Iwasaki, M., Lee, C., Kim, T., Park, W., Journal of The Ceramic Society of Japan, 2008. 116: p. 153.
    17. Linde, R.K. and P.S. DeCarli, Polymorphic Behavior of Titania under Dynamic Loading. The Journal of Chemical Physics, 1969. 50(1): p. 319-325.
    18. Ramdohr, P., Die Erzmineralien und ihre Verwachsungen. Akademie-Verlag, Berlin, Germany, 1975. ed.4.
    19. Goresy, A.E., Chen, M., Dubrovinsky, L., Gillet, P., Graup, G., An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater. Science, 2001. 293(5534): p. 1467-1470.
    20. El Goresy, A., Chen, M,. Gillet, P., Dubrovinsky, L., Graup, G., Ahuja, R., A Natural Shock-Induced Dense Polymorph of Rutile with [alpha]-PbO2 Structure in the Suevite from the Ries Crater in Germany. Earth and Planetary Science Letters, 2001. 192(4): p. 485-495.
    21. Lay, N.L., Effect of Calcination Temperature on the Properties of visible-Light-Active TiO2 Self-Cleaning Surfaces. 2009.
    22. McCormick, J., Chemistry of TiO2 Nanoparticles. University of Delaware, 2006. 3220706: p. 224.
    23. http://www.webelements.com/compounds/titanium/titanium _dioxide.html.
    24. http://ruby.colorado.edu/~smyth/min/tio2.html.
    25. Chen, X. and S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem.Rev., 2007. 107: p. 2891-2959.
    26. Li, W., Metalorganic Chemical Vapor Deposition and Characterization of Titanium Dioxide Nanoparticles. ProQuest Dissertations And Theses, University of Delaware, 2004.
    27. Mills, A. and S.L. Hunte, An Overview of Semiconductor Photocatalysis. Journal of Photochemistry and Photobiology A Chemistry, 108(1), 1997. 108(1): p. 1-35.
    28. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    29. Kataoka, S., Applications of Photocatalytic Oxidation Using TiO2. A Dissertation Submitted at the University of Wilconsin-Madison, 2003. 3089582.
    30. Kawai, T. and T. Sakata, Hydrogen Evolution from Water Using Solid Carbon And Light Energy. Nature, 1979. 282(5736): p. 283-284.
    31. Kawai, T. and T. Sakata, Conversion of Carbohydrate Into Hydrogen Fuel by a Photocatalytic Process. Nature, 1980. 286(5772): p. 474-476.
    32. Frank, A.J. and F. Turecek, Study of Sulfur Oxidation Products by Pyrolysis High-Resolution Mass Spectrometry. Eur. Mass Spectrom., 2000. 5(5): p. 375-384.
    33. Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev., 1995. 95(1): p. 69-96.
    34. Fujishima, A. and X. Zhang, Titanium Dioxide Photocatalysis: Present Situation And Future Approaches. Comptes Rendus Chimie, 2005. 9(5-6): p. 750-760.
    35. Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders. FEMS Microbiology Letters, 1985. 29(1-2): p. 211-214.
    36. Ireland, J.C., Klostermann, P., Rice, E. W., Clark, R. M., Inactivation of Escherichia Coli by Titanium Dioxide Photocatalytic Oxidation. Applied and environmental microbiology, 1993. 59(5): p. 1668-70.
    37. Wei, C., Lin, W. Y., Zainal, Z., Williams, N. E., Zhu, K., Kruzic, A. P., Smith, R. L., Rajeshwar, K., Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-assisted Water Disinfection System. Environmental Science and Technology, 1994. 28(5): p. 934-938.
    38. Watts, R.J., Kong, S., Orr, M.P., Miller, G.C., Henry, B. E., Photocatalytic Inactivation of Coliform Bacteria and Viruses in Secondary Wastewater Effluent. Water Research, 1995. 29(1): p. 95-100.
    39. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., Fujishima, A., Photocatalytic Bactericidal Effect of TiO2 thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect. Journal of Photochemistry and Photobiology A: Chemistry, 1997. 106(1-3): p. 51-56.
    40. Sunada, K., T. Watanabe, and K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 156(1-3): p. 227-233.
    41. Fujishima, A., K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications. BKC Tokyo, 1999.
    42. Minabe, T., Tryk, D. A., Sawunyama, P., Kikuchi, Y., Hashimoto, K., Fujishima, A., TiO2-Mediated Photodegradation of Liquid and Solid Organic Compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2000. 137(1): p. 53-62.
    43. Phillips, L.G. and D.M. Barbano, The Influence of Fat Substitutes Based on Protein and Titanium Dioxide on the Sensory Properties of Lowfat Milks. Journal of Dairy Science, 1997. 80(11): p. 2726-2731.
    44. Les, C.B., Light Spells Doom for Bacteria. Biophotonics, 2008.
    45. Kirk-Othmer, Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed. John Wiley and Sons, New York, 1997. 24: p. 233-250.
    46. EFSA, Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and materials in Contact with Food. The EFSA Journal, 2004. 163: p. 1-12.
    47. Kuznesof, P.M. and M.V. Rao, Titanium Dioxide. Chemical and Technical Assessment, 2006.
    48. Loewenstein, K.L., The Manufacturing Technology of Continuous Glass Fibres 3rd, completely rev. ed. Elsevier, 1993.
    49. http://www.quanyi.com.tw/7628_GlassFabric.htm.
    50. Li, X., B. Bhushan, and P.B. McGinnis, Nanoscale Mechanical Characterization of Glass Fibers. Materials Letters, 1996. 29(4-6): p. 215-220.
    51. Fitzer, E., Fibers, 5. Synthetic Inorganic, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
    52. Gupta, V.B. and V.K. Kothari, Manufactured Fibre Technology. London: Chapman and Hall, 1997: p. 544-546.
    53. Thomason, J.L. and D.W. Dwight, The use of XPS for Characterisation of Glass Fibre Coatings. Composites Part A: Applied Science and Manufacturing, 1999. 30(12): p. 1401-1413.
    54. Thomason, J.L., The Influence of Fibre Properties on the Properties of
    Glass-Fibre-Reinforced Polyamide 6,6. Composite Materials, 1999. 34: p. 158-172.
    55. Thomason, J.L. and M.A. Vlug, Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 1. Tensile and Flexural Modulus. Composites Part A: Applied Science and Manufacturing, 1996. 27(6): p. 477-484.
    56. Zhang, Y., Huang, X., Gao, K.,Yang, Y., Luo, Y., Li, D., Meng, Q., How to Design Dye-Sensitized Solar Cell Modules. Solar Energy Materials and Solar Cells. In Press, Corrected Proof.
    57. Kato, N., Higuchi, K., Tanaka, H., Nakajima, J., Sano, T., Toyoda, T., Improvement in Long-Term Stability of Dye-Sensitized Solar Cell for Outdoor Use. Solar Energy Materials and Solar Cells, 2011. 95(1): p. 301-305.
    58. Gómez-Ortíz, N.M., Vázquez-Maldonado, I. A., Pérez-Espadas, A. R., Mena-Rejón, G. J., Azamar-Barrios, J. A., Oskam, G., Dye-Sensitized Solar Cells with Natural Dyes Extracted from Achiote Seeds. Solar Energy Materials and Solar Cells, 2010. 94(1): p. 40-44.
    59. Grätzel, M., Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153.
    60. Chapin, D.M., C.S. Fuller, and G.L. Pearson., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25: p. 676.
    61. Zhao, J., Wang, A., Abbaspour-sani, E., Yun, F., green, M.A., Improved Efficiency Silicon Solar Cell Module. IEEE electron device letter, 1997. 18.
    62. Cao, F., Electron Transport in the Nanostructured TiO2 Electrodes in the Application of Solar Cells. A Dissertation Submitted at the John Hopskins University, 1998. UMI 9920692.
    63. Tributsch, H., Reaction of Excited Chlorophyll Molecules at Electrodes and in Photosynthesis. Photochemistry and Photobiology, 1972. 16(4): p. 261-269.
    64. Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T., Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell. Nature, 1976. 261(5559): p. 402-403.
    65. Alonso-Vante, N., Beley, M., Chartier, P., Ern, V., Dye Sensitization of Ceramic Semiconducting Electrodes for Photoelectrochemical Conversion. Revue de Physique Appliquée, 1981. 16: p. 5.
    66. Willig, F., Eichberger, R., Sundaresan, N.S., Parkinson, B.A., Experimental Time Scale of Gerischer's Distribution Curves for Electron-Transfer Reactions at rodes. J. Am. Chem. Soc., 1990. 112: p. 2702-2707.
    67. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., Grätzel, M., Conversion of Light to Electricity by cis-X2 (dcbpy)2Ru(II) CT Sensitizers on Nanocrystalline TiO2 Electrodes. J. Amer. Chem. Soc., 1993. 115: p. 6382-6390.
    68. Murakami, T.N. and M. Grätzel, Counter Electrodes for DSC: Application of Functional Materials as Catalysts. Inorganica Chimica Acta, 2008. 361(3): p. 572-580.
    69. Nazeeruddin, M.K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, Christian- H., Grätzel, M., Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305.
    70. Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Grätzel, M.., Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell. The Journal of Physical Chemistry B, 2003. 107(34): p. 8981-8987.
    71. Wang, P., Zakeeruddin, S.M., Humphry-Baker, R., Moser, J.E., Grätzel, M., Molecular-scale Interface Engineering of TiO2 Nanocrystalline: Improving the Efficiency and Stability of Dye-Sensitized Solar Cells. Advanced Materials, 2003. 15: p. 2101-2104.
    72. Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Grätzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005. 127(48): p. 16835-16847.
    73. Cazzanti, S., Dye Sensitized Solar Cells: Principles and Mechanisms. 2009.
    74. Grätzel, M., Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1-3): p. 3-14.
    75. Henglein, A., Small-particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chemical Reviews, 1989. 89(8): p. 1861-1873.
    76. Memming, R., Electron Transfer Process with Excited Molecule of SC Electrodes. Prog. Surf. Sci., 1984. 17: p. 7.
    77. Zabri, H., Odobel, F., Altobello, S., Caramori, S., Bignozzi, C. A., Efficient Osmium Sensitizers Containing 2,2'-bipyridine-4,4'-bisphosphonic Acid Ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 166(1-3): p. 99-106.
    78. Altobello, S., Bignozzi, C. A., Caramori, S., Larramona, G., Quici, S., Marzanni, G., Lakhmiri, R., Sensitization of TiO2 with Ruthenium Complexes Containing Boronic Acid Functions. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 166(1-3): p. 91-98.
    79. Matthews, D., P. Infelta, and M. Grätzel, Calculation of the Photocurrent-Potential Characteristic for Regenerative, Sensitized Semiconductor Electrodes. Solar Energy Materials and Solar Cells, 1996. 44(2): p. 119-155.
    80. Cahen, D., Hodes, G., Grätzel, M., Guillemoles, J., Riess, I., Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2000. 104(9): p. 2053-2059.
    81. Halme, J., Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests. Master's thesis submitted in Helsinki University of Technology 2002: p. 115.
    82. Gordon, R.G., Criteria for Choosing Transparent Conductors. MRS Bulletin, 2000. Aug: p. 52-57.
    83. Sze, S.M., Physics of Semiconductor Devices. Wiley: New York, 1981.
    84. Finklea, H.O., Semiconductor Electrodes. Elsevier Science Publisher B.V, 1988.
    85. Kalyanasundaram, K. and M. Grätzel, Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices. Coordination Chemistry Reviews, 1998. 117: p. 347-414.
    86. Hagfeldt, A. and M. Grätzel, Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev., 1995. 95(49-68).
    87. Gebeyehu, D., Brabec, C.J., Sariciftci, N.S., Vangeneugen, D., Kiebooms, R., Vanderzande, D., Kienberger, F.,Schindler, H., Solid State Dye-Sensitized TiO2 Solar Cells with poly(3-octylthiophene)as Hole Transport Layer. Synthetic Met., 2001. 121: p. 1549-1550.
    88. Marton, A., Understanding the Performance Determining Processes in Dye Sensitized Solar Cells. A Dissertation Submitted at the John Hopskins University, 2006. UMI 3240768.
    89. Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddinm S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., Bignozzi, C. A., Grätzel, M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar Cells. J. Am. Chem. Soc., 2001. 123: p. 1613–1624.
    90. Argazzi, R., Bignozzi, C. A., Hasselmann, G.M., Meyer, G.J., Efficient Light-to-Electrical Energy Conversion with Dithiocarbamate-Ruthenium Polypyridyl Sensitizers. Inorg. Chem., 1998. 37: p. 4533.
    91. Wagner, R.W., T.E. Johnson, and J.S. Lindsey, Soluble Synthetic Multiporphyrin Arrays. 1. Modular Design and Synthesis. Journal of the American Chemical Society, 1996. 118(45): p. 11166-11180.
    92. Hsiao, J.-S., Krueger, B., Wagner, R., Johnson, T., Delaney, J., Mauzerall, D., Fleming, G., Lindsey, J., Bocian, D., Donohoe, R., Soluble Synthetic Multiporphyrin Arrays. 2. Photodynamics of Energy-Transfer Processes. Journal of the American Chemical Society, 1996. 118(45): p. 11181-11193.
    93. Seth, J., Palaniappan, V., Wagner, R., Johnson, T., Lindsey, J., Bocian, D., Soluble Synthetic Multiporphyrin Arrays. 3. Static Spectroscopic and Electrochemical Probes of Electronic Communication. Journal of the American Chemical Society, 1996. 118(45): p. 11194-11207.
    94. VanPatten, P.G., Shreve, A. P., Lindsey, J. S., Donohoe, R. J., Energy-Transfer Modeling for the Rational Design of Multiporphyrin Light-Harvesting Arrays. Journal of Physical Chemistry B, 1998. 102: p. 4209-4216.
    95. Green, M.A., Operating Principles, Technology, and System Applications Solar Cells. Englewood Cliffs, N.J., Prentice-Hall, Inc., 1982. 276(ISBN 0-13-822270-3).
    96. Hagfeldt, A. and M. Grätzel, Molecular Photovoltaics. Accounts of Chemical Research, 2000. 33(5): p. 269-277.
    97. Wolfbauer, G., A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells. Solar Energy Materials & Solar Cells, 2001. 70: p. 85-101.
    98. Hagfeldt, A., Verification of High Efficiencies for the Grätzel-cell. A 7% Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Solar Energy Materials & Solar Cells, 1994. 31: p. 481-488.
    99. Deb, S.K., Photochemical Solar Cells Based on Dye-Sensitization of Nanocrystalline TiO2. National Energy Laboratory, 1998. NREL/CP-590-250-25056.
    100. Chmiel, G., Dye sensitized solar cells (DSC): Progress Towards Application. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 1998.
    101. Vlachopoulos, N., Liska, P., Augustynski, J., Grätzel, M., Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films. Journal of the American Chemical Society, 1988. 110(4): p. 1216-1220.
    102. Gregg, B.A., Pichot, F., Ferrere, S., Fields, C.L., Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods to Passivate the Interfaces. Journal of Physical Chemistry B, 2001. 105(7): p. 1422-1429.
    103. Argazzi, R., Bignozzi, C.A., Heimer, T.A., Castellano, F.N., Meyer, G.J., Light Induced Charge Separation Across Ru(II) Modified Nanocrystalline TiO2 Interfaces with Phenothiazine Donors. Journal of Physical Chemistry B, 1997. 101(14): p. 2591-2597.
    104. Nusbaumer, H., Moser, J. - E., Zakeeruddin, S. M., Nazeeruddin, M. K., Graetzel, M., Co(II)(bip)2+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. J. Phys. Chem. B, 2001. 105(43): p. 10461-10464.
    105. Smestad, G., Testing of Dye-Sensitized TiO2 Solar Cells I: Experimental Photocurrent Output and Conversion Efficiencies. Solar Energy Materials & Solar Cells, 1994. 32(3): p. 259-272.
    106. Lee, S., Modification of Electrodes in Nanocrystalline Dye-Sensitised TiO2 Solar Cells. Solar Energy Materials and Solar Cells, 2001. 65: p. 193-200.
    107. Papageorgiou, N., An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media. J. Electrochem. Soc, 1997. 144(3): p. 876-84.
    108. Olsen, E., Dissolution of Patinum in Methoxy Propionitrile Containing Li/I2. Solar Energy Materials and Solar Cells, 2000. 63: p. 267-273.
    109. Kay, A. and M. Grätzel, Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder. Solar Energy Materials & Solar Cells, 1996. 44: p. 99-117.
    110. Yen, W.-H., Hsieh, C-C., Hung, C-Y., Wang, H-W., Tsui, M-C., Flexible TiO2 Working Electrode for Dye-sensitized Solar Cells. Journal of the Chinese Chemical Society, 2010. 57: p. 1162-1166.
    111. Fan, K., Peng, T., Chai, B., Chen, J., Dai, K., Fabrication and Photoelectrochemical Properties of TiO2 Films on Ti Substrate for Flexible Dye-Sensitized Solar Cells. Electrochimica Acta, 2010. 55(18): p. 5239-5244.
    112. Yamaguchi, T., Tobe, N., Matsumoto, D., Arakawa, H., Highly Efficient Plastic Substrate Dye-Sensitized Solar Cells Using A Compression Method for Preparation of TiO2 Photoelectrodes. Chemical Communications, 2007(45): p. 4767-4769.
    113. Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S., Sato, C., Atmospheric scanning Electron Microscope Observes Cells and Tissues in Open Medium Through Silicon Nitride Film. Journal of Structural Biology, 2010. 169(3): p. 438-449.
    114. Xiao, Y., Wu, J., Yue, G., Xie, G., Lin, J., Huang, M., The Preparation of Titania Nanotubes and Its Application in Flexible Dye-Sensitized Solar Cells. Electrochimica Acta, 2010. 55(15): p. 4573-4578.
    115. Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., Minoura, H., Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells. Advanced Functional Materials, 2006. 16(9): p. 1228-1234.
    116. Singhanu, N. and Y.-M. Yang, Efficiency Enhancement in Dye-Sensitized Solar Cells by Utilization of Al2O3 Layers. Thesis for Master of Science, NCKU-Taiwan, 2010.
    117. Peter, L.M., Characterization and Modeling of Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2007. 111(18): p. 6601-6612.
    118. Nelson, J., The Physics of Solar Cells. Imperial College Press, 2003.
    119. Liu, X., et al., An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material. Advanced Materials, 2010. 22(20): p. E150-E155.
    120. Plank, N.O.V., Howard, I., Rao, A., Wilson, M. W. B., Ducati, C., Mane, R., Bendall, J., Louca, R., Greenham, N., Miura, H., Friend, R., Snaith, H., Welland, M., Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Core−shell Nanostructures. The Journal of Physical Chemistry C, 2009. 113(43): p. 18515-18522.
    121. Hirose, F., Shikaku, M., Kimura, Y., Niwano, M., IR Study on N719 Dye Adsorption with High Temperature Dye Solution for Highly Efficient Dye-Sensitized Solar Cells. Journal of The Electrochemical Society, 2010. 157(11): p. B1578-B1581.
    122. Lee, C., Kang, W., Ko, M., Kim, K., Park, N., Study on the Change in Photovoltage by Control of Cell Gap in Dye-Sensitized Solar Cells. Journal of Solar Energy Engineering, 2010. 132(021104): p. 5.
    123. Lindström, H., Södergren, S., Solbrand, A,. Rensmo, H., Hjelm, J., Hagfeldt, A., Lindquist, S., Li+ Ion Insertion in TiO2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films. The Journal of Physical Chemistry B, 1997. 101(39): p. 7710-7716.
    124. Yoo, B., Kim, K., Bang, S., Ko, M., Kim, K., Park, N., Chemically Deposited Blocking Layers on FTO Substrates: Effect of Precursor Concentration on Photovoltaic Performance of Dye-Sensitized Solar Cells. Journal of Electroanalytical Chemistry, 2010. 638(1): p. 161-166.
    125. Burke, A., Ito, S., Snaith, H., Bach, U., Kwiatkowski, J., Grätzel, M., The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating “Planar” Organic Dyes. Nano Letters, 2008. 8(4): p. 977-981.
    126. Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., Control of Dark Current in Photo-electrochemical (TiO2/I--I3-) and Dye-Sensitized Solar Cells. ChemComm, 2005. 34: p. 4351.
    127. Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., Minoura, H., Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells. Advanced Functional Materials, 2006. 16: p. 1228–1234.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE