簡易檢索 / 詳目顯示

研究生: 沈宗佑
Shen, Zong-You
論文名稱: 加壓充水阻抗管的發展與應用
Development and Applications of a Pressurized Water-Filled Impedance Tube
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 117
中文關鍵詞: 反射係數透射係數三參數校正法充水阻抗管加壓設備橡膠多孔材料
外文關鍵詞: reflection coefficient, transmission coefficient, two-microphone-three-calibration method (3PCM), water-filled impedance tube (WFIT), pressurization equipment, porous rubber material
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣中材料的聲學特性通常使用空氣阻抗管來測量。材料的反射係數、透射係數和吸收係數都可以利用不同類型的空氣阻抗管結合電腦軟體獲得。然而,隨著近年來國防工業的需求和環保意識的提高,水下噪音對海洋的影響越來越受到重視。因此,水下吸聲材料的開發已成為一個重要課題。測量水中材料的聲學特性,開發充水阻抗管,建立完整的測量程序是本研究的主要課題。
    充水阻抗管可用於測量材料在水中的聲學特性。在實際環境中,不同深度下的靜水壓力變化可能會引起材料性質的變化,從而影響其聲學特性。為了研究不同靜水壓力對材料聲學特性的影響,本研究通過在阻抗管上安裝加壓設備,研製出一種加壓充水阻抗管。應用雙麥克風三參數校正(3PCM)方法獲得反射係數。
    利用量測橡膠多孔材料來驗證實驗結果的重複性,同一實驗在同一天和不同天進行了3次。實測數據說明,同一天測得的吸聲材料反射係數幾乎相同,而不同天測得的結果只有微小的差異,從而驗證了實驗結果的重複性和所開發測量系統的可靠性。
    在加壓阻抗管中測量矽膠、聚氨酯(PU)膠及不同厚度和不同壓力下的多孔橡膠材料的聲學特性。所得材料的水下聲學特性可為開發以橡膠材料為基體材料的吸聲材料提供基礎信息。
    此外,為了全面了解材料的聲學特性,本研究中也研製了透射係數測量系統,並對多孔橡膠材料進行了測量。測量結果顯示良好的重複性,說明此一設計的可行性。

    The acoustic properties of materials in the air are usually measured using air impedance tubes. The reflection, transmission, and absorption coefficients of materials can be obtained by using different types of air impedance tubes combined with the computer software. However, in recent years with the demand of the defence industry and the rise in environmental awareness, the impact of underwater noise on the ocean increasingly receives more attention. Therefore, the development of underwater sound-absorbing materials has become an important issue. Measuring the acoustic properties of materials in water, developing water-filled impedance tubes (WFIT), and establishing a complete measurement procedure were the main objectives of this study.
    A water-filled impedance tube (WFIT) can be used to measure the acoustic properties of materials in water. In an actual environment, the varying hydrostatic pressure under various depths may cause changes in the material properties, and thus affecting its acoustic characteristic. So, in order to study the effect of the different hydrostatic pressure on the acoustic properties of materials, this study developed a pressurized WFIT by installing a pressurization equipment at the impedance tube. The two-microphone-three-calibration (3PCM) method was applied to obtain the reflection coefficients.
    In order to verify the compatibility of experimental results, the proposed WFIT was used to measure the acoustic reflection coefficient of a porous rubber materials for three times on the same day and on different days. The measured data revealed that the reflection coefficients of sound-absorbing materials obtained on the same day were almost identical, while the results that obtained in various dates exhibited only slight differences, and thus the repeatability of the experimental results and the reliability of the developed measuring system were verified.
    Acoustic reflection coefficients of silicon rubber, polyurethane (PU) rubber, and porous rubber material with different thicknesses and under various pressures were then measured in the pressurized impedance tube. The obtained underwater acoustic properties of materials might provide the basic information for developing sound-absorbing materials using the rubber material as the matrix material.
    In addition, for a complete understanding of the acoustic properties of material, the WFIT has been further modified in order to make it capable of measuring the transmission coefficients through sound-absorbing materials. The measured sound transmissions through a porous rubber material revealed a good compatibility. Thus, the capability of the proposed WFIT for measuring both the acoustic reflection and transmission coefficients of materials was demonstrated.

    Abstract i 摘要 iii 誌謝 iv List of Tables viii List of Figures ix Notation xv Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature Review 3 1.3 Research Objectives 8 Chapter 2. Theory and Methodology 10 2.1 Acoustic Impedance 10 2.2 Sound Propagation in a Circular Tube 13 2.3 Transfer Function Method 17 2.4 Sensor-Switching Technique 19 2.5 Two-Microphone-Three-Calibration Method (3PCM) 21 2.6 Measurement of Transmission Coefficient in a WFIT 25 Chapter 3. Design of a WFIT 33 3.1 Design Specifications of an Air Impedance Tube 33 3.2 Sound Propagation in a Circular Tube Filled with Air 34 3.3 Sound Propagation in a Circular Tube Filled with Water 39 Chapter 4. Experiments 44 4.1 Experimental Setup 44 4.2 Measurement Procedure 61 4.3 Measurement System of the Transmission Coefficient 68 Chapter 5. Results and Discussion 73 5.1 Comparison of Reflection Coefficients Obtained Using Various Methods 73 5.2 Verification of 3PCM 75 5.3 Measurement of the Reflection Coefficient of Materials 80 5.4 Measurements of Transmission Coefficients 104 Chapter 6. Conclusion 110 References 114

    Acoustics. (1996). In Determination of sound absorption coefficient and impedance in impedance tubes–Part I: Method using standing wave ratio,ISO 10534-1: International Organization for Standardization Geneva, Switzerland.
    ASM International Metal Handbook, 9th ed. (1989). (Vol. 17). ASM international, Materials Park, OH.
    ASTM E1050-12 (2012). In Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system ASTM Committee; . West Conshohocken, PA, USA: ASTM International.
    ASTM E2611-09 (2009). In Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method ASTM Committee; . West Conshohocken, PA, USA: ASTM International.
    Bodén, H., & Åbom, M. (1986). Influence of errors on the two‐microphone method for measuring acoustic properties in ducts. Journal of the Acoustical Society of America, 79(2), 541-549. doi:10.1121/1.393542
    Chung, J. Y., & Blaser, D. A. (1980a). Transfer function method of measuring in‐duct acoustic properties, I. Theory. Journal of the Acoustical Society of America, 68(3), 907-913. doi:10.1121/1.384778
    Chung, J. Y., & Blaser, D. A. (1980b). Transfer function method of measuring in‐duct acoustic properties, II.Experiment. Journal of the Acoustical Society of America, 68(3), 914-921. doi:10.1121/1.384779
    Commander, K. W., & Prosperetti, A. (1989). Linear pressure waves in bubbly liquids: Comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2), 732-746. doi:10.1121/1.397599
    Corbett III, S. S. (1983). A Two-Hydrophone Technique for Measuring the Complex Reflectivity of Materials in Water-Filled Tubes. (M. S. thesis). Pennsylvania State University, Pennsylvania State,USA.
    Del Grosso, V. A. (1971). Analysis of multimode acoustic propagation in liquid cylinders with realistic boundary conditions–application to sound speed and absorption measurements. Acta Acustica united with Acustica, 24(6), 299-311.
    Dong, J., & Tian, P. (2020). Review of underwater sound absorption materials. IOP Conference Series: Earth and Environmental Science, 508(1), 012182. doi:10.1088/1755-1315/508/1/012182
    Feng, L. P. (2013). Modified impedance tube measurements and energy dissipation inside absorptive materials. Applied Acoustics, 74(12), 1480-1485. doi:10.1016/j.apacoust.2013.06.013
    Folds, D. L. (1974). SPEED OF SOUND AND TRANSMISSION LOSS IN SILICONE RUBBERS AT ULTRASONIC FREQUENCIES. Journal of the Acoustical Society of America, 56(4), 1295-1296. doi:10.1121/1.1903422
    Fu, Y. F., Fischer, J., Pan, K. Q., Yeoh, G. H., & Peng, Z. X. (2021). Underwater sound absorption properties of polydimethylsiloxane/carbon nanotube composites with steel plate backing. Applied Acoustics, 171, 11. doi:10.1016/j.apacoust.2020.107668
    Guillermic, R. M., Lanoy, M., Strybulevych, A., & Page, J. H. (2019). A PDMS-based broadband acoustic impedance matched material for underwater applications. Ultrasonics, 94, 152-157. doi:10.1016/j.ultras.2018.10.002
    Heard Island Experiment. (1991). Washington, DC: The National Academies Press.
    Huang, C.-J., Lin, Y.-T., Chang, H.-Y., Tien, T.-M., & Hsu, T.-W. (2016). Attenuation of sounds propagating through a bubble screen. [Attenuation of Sounds Propagating through a Bubble Screen]. Journal of Coastal and Ocean Engineering, 16(1), 43-53. doi:10.6266/jcoe.2016.1601.04
    Huang, C.-J., Shen, Z.-Y., Dong, C.-M., Liu, K.-W., & Yang, Y.-C. (2021). Development and applications of a water-filled impedance tube by employing the three-parameters-calibration method. Journal of Taiwan Society of Naval Architects and Marine Engineers, 40(2), 53-65.
    Iwase, T., Biwa, T., & Yazaki, T. (2010). Acoustic impedance measurements of pulse tube refrigerators. Journal of Applied Physics, 107(3), 6. doi:10.1063/1.3296225
    Jayakumari, V. G., Shamsudeen, R. K., Rajeswari, R., & Mukundan, T. (2019). Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications. Journal of Applied Polymer Science, 136(10), 9. doi:10.1002/app.47165
    Jian, Z. Y. (2005). The Study on the Measurement of Material''s Underwater Acoustic Properties by Using the Water-filled Elastic Impedance Tube. (Master Thesis). National Taiwan University, Taipei, Taiwan. Retrieved from https://hdl.handle.net/11296/t74dte
    Jin, Y. Q., Walker, E., Krokhin, A., Heo, H., Choi, T. Y., & Neogi, A. (2020). Enhanced Instantaneous Elastography in Tissues and Hard Materials Using Bulk Modulus and Density Determined Without Externally Applied Material Deformation. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 67(3), 624-634. doi:10.1109/tuffc.2019.2950343
    Jones, M. G., & Stiede, P. E. (1997). Comparison of methods for determining specific acoustic impedance. Journal of the Acoustical Society of America, 101(5), 2694-2704. doi:10.1121/1.418558
    Joshi, D., Bhatnager, D., Kumar, A., & Gupta, R. (2009). Direct measurement of acoustic impedance in liquids by a new pulse echo technique. Mapan-Journal of Metrology Society of India, 24(4), 215-224. doi:10.1007/s12647-009-0026-6
    Joshi, D., Kumar, A., Gupta, R., & Yadav, S. (2013). Sensitivity Enhancement of Concurrent Technique of Acoustic Impedance Measurement. Mapan-Journal of Metrology Society of India, 28(2), 79-83. doi:10.1007/s12647-013-0051-3
    Jung, S. S., Kim, Y. T., Lee, Y. B., Cho, S. I., & Lee, J. K. (2008). Measurement of sound transmission loss by using impedance tubes. Journal of the Korean Physical Society, 53(2), 596-600. doi:10.3938/jkps.53.596
    Lafleur, L. D., & Shields, F. D. (1995). Low‐frequency propagation modes in a liquid‐filled elastic tube waveguide. Journal of the Acoustical Society of America, 97(3), 1435-1445. doi:10.1121/1.412981
    Liu, J.-Y. (2001). Underwater Sound: Operatin Principles of Underwater Acoustic Systmes: National Institute for Compilation and Translation.
    Liu, K. W., Huang, C. J., Too, G. P., Shen, Z. Y., & Sun, Y. D. (2022). Underwater Sound Source Localization Based on Passive Time-Reversal Mirror and Ray Theory. Sensors, 22(6), 2420. doi:10.3390/s22062420
    Mott, P. H., Roland, C. M., & Corsaro, R. D. (2002). Acoustic and dynamic mechanical properties of a polyurethane rubber. Journal of the Acoustical Society of America, 111(4), 1782-1790. doi:10.1121/1.1459465
    Oblak, M., Pirnat, M., & Boltezar, M. (2018). An impedance tube submerged in a liquid for the low-frequency transmission-loss measurement of a porous material. Applied Acoustics, 139, 203-212. doi:10.1016/j.apacoust.2018.04.014
    Seybert, A. F., & Ross, D. F. (1977). Experimental determination of acoustic properties using a two‐microphone random‐excitation technique. Journal of the Acoustical Society of America, 61(5), 1362-1370. doi:10.1121/1.381403
    Sun, L., & Hou, H. (2014). Measurement of sound absorption by underwater acoustic material using pulse-separation method. Applied Acoustics, 85, 106-110. doi:10.1016/j.apacoust.2014.04.009
    Sun, Y., & Hua, B. (2022). System error calculation and analysis of underwater sound absorption coefficient measurement experiment. Applied Acoustics, 186, 108489. doi:10.1016/j.apacoust.2021.108489
    Wilson, P. S. (2002). Sound propagation and scattering in bubbly liquids. (Ph.D. Dissertation). Boston University, Boston,USA. Retrieved from https://www.proquest.com/dissertations-theses/sound-propagation-scattering-bubbly-liquids/docview/276588154/se-2?accountid=12719
    Wilson, P. S., Roy, R. A., & Carey, W. M. (2003). An improved water-filled impedance tube. Journal of the Acoustical Society of America, 113(6), 3245-3252. doi:10.1121/1.1572140
    Wilson, W. D. (1959). Speed of sound in distilled water as a function of temperature and pressure. Journal of the Acoustical Society of America, 31(8), 1067-1072. doi:10.1121/1.1907828
    Zhou, C. G., Bai, G. F., Liu, B. L., & Li, X. D. (2010). Calibration method in measurements of acoustic characteristics of materials in a water filled impedance tube. Acta Acustica, 35(02), 154-161.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE