簡易檢索 / 詳目顯示

研究生: 林博文
Lin, Bo-Wen
論文名稱: 反脈動式循環輔助之波動強度分析
Wave Intensity Analysis of Counter-Pulsation Circulation Support
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 167
中文關鍵詞: 混合循環模式波動強度分析反脈動區塊參數法
外文關鍵詞: Counter-Pulsation, Lumped Parameter Method, Hybrid Circulation Model, Wave Intensity Analysis
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在發展一套適合反脈動循環輔助的動力模式,結合一維流場與區塊參數法(Lumped Parameter Method),提出全新的混合循環模式(Hybrid Circulation Model)。利用一維流場模型來模擬動脈的波傳現象,而區塊參數法則負責模擬其餘的血管系統。並針對此一維血液循環方程式發展出上風Roe近似里曼算子(Roe Approximate Riemann Solver),且用朗吉-庫塔(Runge-Kutta)時間步進法來積分此耦合的混合循環模式。隨時間變化的左右心室功能以壓力–體積關係(Pressure-Volume Relationship)來描述,藉由調整心肌收縮彈性係數來模擬健康及心衰竭狀態下之血動力特性,並於心衰竭狀態下使用主動脈氣球泵浦 (Intra-Aortic Balloon Pump,簡稱IABP)及側主動脈氣球泵浦(PABP)輔助,分析以不同相位、驅動強度、心跳頻率及氣球體積對反脈動循環輔助效果的影響。模擬結果顯示增加氣球體積可以降低左心後負載(After Load)及增加心博量(Cardiac Output)的輸出。在氣球體積為40 ml的狀態下,使用IABP及PABP可以增加心博量分別為4% 和11%。此外,相較於IABP,PABP的效能並不隨著心跳頻率的改變而有太大的影響。反脈動循環輔助綜合性指標endocardical viability ratio (EVR) 顯示兩者的趨勢相同,表示輔助的效能並沒有很明顯的差異。使用波強度分析法可以發現,PABP舒張灌流時可以產生比IABP更強烈的壓縮波,而收縮卸載輔助可以使左心收縮時產生較大的順向壓縮波峰值。本研究使用波動強度分析法探討反脈動循環輔助,顯示出PABP產生反脈動波動能量優於IABP。

    The present research aims at developing a system dynamic model that can simulate various hemodynamic and wave characteristics associated with the counter-pulsation circulation support. A novel hybrid circulation model consisting of a one-dimensional flow model and a lumped parameter circulation model was constructed. Wave propagation phenomenon in the arteries is simulated using the one-dimensional flow model with other parts of the vasculature represented by the lumped parameter circulation model. Roe-splitting upwind scheme was developed for this one-dimensional vascular equations and Runge-Kutta marching was used for time-stepping this coupled hybrid circulation system. Suga-Sagawa pressure-volume relationship was adopted to describe the time-varying left and right ventricular function. By adjusting the time-varying elastance of the ventricles, the healthy and failed heart conditions can be simulated. Failing heart supported either by intra-aortic balloon pump (IABP) or by para-aortic balloon pump (PABP) was simulated. These simulation results indicate that increasing pumping volume may result in left ventricular afterload reduction and cardiac output enhancement. For 40 ml pumping support, cardiac output was elevated to 4% and 11% for IABP and PABP, respectively. Moreover, contrary to the IABP support characteristics, heart rate does not show strong influence on PABP perfusion augmentation. Endocardical viability ratio (EVR), however, shows similar trend for both counter-pulsation devices. Using the wave intensity analysis, it was observed that, first, for diastolic augmentation, PABP produces stronger compression wave than does IABP; and second, left ventricle may generate steeper forward-going compression pressure waveform when assisted by PABP systolic unloading. The present wave intensity analysis (WIA) approach shows that counter-pulsation supported by PABP is more effective than that of the IABP.

    目 錄 中文摘要 I Abstract III 誌 謝 IV 目 錄 VI 表目錄 IX 圖目錄 X 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 1-3 波強度分析法 5 1-4 反脈動循環輔助血行動力指標 8 1-4-1 Tension Time Index 8 1-4-2 Endocardial Viability Ratio 9 1-4-3 Mean Systolic Aortic Pressure 9 1-4-4 Mean Diastolic Aortic Pressure 10 1-4-5 End Diastolic Aortic Pressure 10 第二章 統御方程式及數值方法 11 2-1 區塊參數法 11 2-2 一維動脈血管流 12 2-3 數值通量計算 14 2-4 時間積分 16 2-5 邊界條件 17 2-6 幾何外型及計算格點 18 第三章 系統動力模型發展 20 3-1 心室壓力與體積關係 20 3-2 混合循環模式 22 3-3 主動脈氣球泵浦模式 23 第四章 主動脈氣球泵浦輔助 26 4-1 健康及心衰竭狀態 26 4-2 氣球脹縮時間對血行動力的影響 28 4-3 氣球脹縮速度對血行動力的影響 33 4-4 心跳頻率對血行動力的影響 34 4-5 氣球位置對血行動力的影響 35 4-6 氣球體積對血行動力的影響 36 第五章 主動脈側氣球泵浦輔助 39 5-1氣球脹縮時間對血行動力的影響 39 5-2氣球脹縮速度對血行動力的影響 43 5-3 心跳頻率對血行動力的影響 44 5-4 氣球體積對血行動力的影響 45 第六章 探討IABP與PABP輔助之差異 47 6-1 探討血行動力指標 47 6-2 波動強度分析 48 第七章 結論 50 7-1 結論 50 7-2 未來工作 51 參考文獻 52 附錄 59 表 69 圖 81 自述 167

    [1] Giridharan, G. A., Skliar, M., Olsen, D. B., and Pantalos, G. M.,“Modeling and
    Control of a Brushless DC Axial Flow Ventricular Assist Device,"ASAIO Journal, Vol. 48, 2002, pp. 272-289.
    [2] Benham, R. D., “An ISL-8 and ISL-15 Study of the Physiological Simulation Benchmark Experiment,” Simulation, Vol. 16, Apr. 1972, pp. 152-156.
    [3] Olufsen, M. S.,“Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries,"American Journal of Physiology, Vol. 276, 1999, pp. H257-H268.
    [4] Olufsen, M. S., Peskin, C. S., Kim, W. Y., et al.,“Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions,"Annals of Biomedical Engineering, Vol. 28, 2000, pp. 1281-1299.
    [5] Stergiopulos, N., Young, D. F., and Rogge, T. R., “Computer Simulation of Arterial Flow with Applications to Arterial and Aortic Stenoses,” Journal of Biomechanics, Vol. 25, 1992, pp. 1477-1488.
    [6] Barnard, A. C. L., Hunt, W. A., Timlake, W. P., and Varley, E., “A Theory of Fluid Flow in Compliant Tubes,” Biophysical Journal, Vol. 6, 1966, pp. 717-724.
    [7] Formaggia, L., Gerbeau, J. F., Nobile, F., and Quarteroni J., “On the Coupling of 3D and 1D Navier-Stokers Equations for the Flow Problems in Compliant Vessels,” Computer Methods in Appied Mechanics and Engineering, Vol. 191, 2001, pp. 561-582.
    [8] Vignon, I. E., and Taylor, C. A., “Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries,” Wave Motion, Vol. 39, 2004, pp. 361-374.
    [9] Huo, Y., and Kassab, G. S., “Pulsatile Blood Flow in the Entire Coronary Arterial Tree: Theory and Experiment, ” American Journal of Physiology Heart Circulatory Physiology, Vol. 291, 2006, pp. H1074-1087.
    [10] Westerhof, N., Bosman, F., DeVries, C. J., and Noordergraaf, A., “Analog Studies of the Human Systemic Arterial Tree,” Journal of Biomechanics, Vol. 2, 1969, pp. 121-143.
    [11] Segers, P., Dubois, F., Wachter D. De, and Verdonck, P., “Role and Relevancy of a Cardiovascular Simulator,” Journal of Cardiovascular Engineering Vol. 3, 1998, pp. 48-56.
    [12] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp. 357-372.
    [13] Stettler, J. C., Niederer, P., and Anlikeer, M., “Theoretical Analysis of Arterial Hemodynamics Including the Influence of Bifurcateions. Part I: Mathematical Model and Prediction of Normal Pulse Patterns, ” Annals of Biomedical Engineering, Vol. 9, 1981, pp. 145-164.
    [14] Judd, R. M., Redberg, D. A., and Mates, R. E., “Diastolic Coronary Resistance and Capacitance are Independent of Duration of Diastole,” American Journal of Physiology Heart Circulatory Physiology, Vol. 260, 1991, pp. H943-H952.
    [15] Lee, J., Chambers, D. E., Akizuki, S., and Downey, J. M., “The Role of Vascular Capacitance in Coronary Arteries,” Circulation Research, Vol. 55, 1984, pp. 751-762.
    [16] He, Y., Liu, H., and Himeno, R., “Numerical Study on the Relationship Between the Flow Rate and Temperature in a Peripheral Artery Simulated by a One-Dimensional Model of an Elastic Tube,” Computational Biomechanics, Vol. 31, Aug. 2002, pp. 238-244.
    [17] Sagawa, K., Suga, H., and Sunagawa, K., Cardiac Contraction and the Pressure-Volume Relationship, Oxford University Press, New York, 1988.
    [18] Lazzari, C. De, Darowski, M., Ferrari, G., Clement, F., and Guaragno, M., “Computer Simulation of Haemodynamic Parameters Changes with Left Ventricle Assist Device and Mechanical Ventilation,” Computers in Biology and Medicine, Vol. 30, 2000, pp. 55-69.
    [19] He, Y., Liu, H., and Himeno, R., “A One-Dimensional Thermo-Fluid Model of Blood Circulation in the Human Upper Limb,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 2735-2745.
    [20] Olufsen, M., “Modeling the Arterial System with Reference to an Anesthesia Simulator,” Ph.D. thesis, Roskilde: IMFUFA, Roskilde University, Denmark, Text No. 345, 1998.
    [21] Zelano, J. A., Li, J. K.-J., and Welkowitz, W., “A Closed-Loop Control Scheme for Intraaortic Balloon Pumping,” IEEE Transaction on Biomedical Engineering, Vol. 37, No. 2, 1990, pp. 182-192.
    [22] Toyota, E., Ogasawara, Y., Hiramatsu, O., et al., “Dynamics of Flow Velocities in Endocardial and Epicardial Coronary Arterioles,” American Journal of Physiology Heart Circulatory Physiology, Vol. 288, 2005, pp. H1598-H1603.
    [23] Stevenson, L. W. and Kormos, R. L., “Mechanical Cardiac Support 2000: Current Applications and Future Trial Design,” Journal of the American College of Cardiology, Vol. 37, No. 1, 2001, pp. 340-70.
    [24] Papaioannou, T. G., and Stefanadis, C., “Basic Principles of the Intraaortic Balloon Pump and Mechanisms Affecting Its Performance,”ASAIO Journal, Vol. 51, 2005, pp. 296-330.
    [25] Milnor, W. R., Hemodynamics, 2nd ed., Williams & Wilkins, Baltimore, Maryland, U.S.A, 1989.
    [26] Barnea, O., Moore, T. W., Dubin, S. E., and Jaron, D., “Cardiac Energy Considerations during Intraaortic Balloon Pumping,” IEEE Transaction on Biomedical Engineering, Vol. 37, No. 2, 1990, pp. 170-181.
    [27] Stamatelopoulos, S. F., Nanas, J. N., Saridakis, N. S., et al.,“Treating Severe Cardiogenic Shock by Large Counterpulsation Volumes,” The Annals of Thoracic Surgery, Vol. 62, 1996, pp. 1110-7.
    [28] Terrovitis, J. V., Charitos, C. E., Tsolakis, E. J., et al., “Superior Performance of a Paraaortic Counterpulsation Device Compared to the Intraaortic Balloon Pump,” World Journal of Surgery, Vol. 27, No. 12, 2003, pp. 1311-1316.
    [29] Parker, K. H., and Jones, C. J. H., “Forward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics,"Journal of Biomechanical Engineering, Vol. 112, 1990, pp. 322-326.
    [30] Sun, Y. H., Anderson, T. J., Parker, K. H., and Tyberg, J. V., “Wave-Intensity Analysis: a New Approach to Coronary Hemodynamics,"Journal of Applied Physiology, Vol. 89, 2000, pp. 1636-1644.
    [31] Khir, A. W., and Parker, K. H., “Wave Intensity in the Ascending Aorta: Effects of Arterial Occlusion,” Journal of Biomechanics, Vol. 38, 2005, pp. 647-655.
    [32] Bavin, T. K., and Self, M. A., “Weaning from Intra-Aortic Balloon Pump Support,” American Journal of Nursing, October 1991, pp. 54-59.
    [33] Barnea, O., Moore, T. W., and Jaron, D., “Computer Simulation of the Mechanically-Assisted Failing Canine Circulation,” Annals of Biomedical Engineering, Vol. 18, 1990, pp. 263-283.
    [34] Sun, Y., “Modeling the Dynamics Interaction Between Left Ventricle and Intra-Aortic Balloon Pump,” American Journal of Physiology Heart Circulatory Physiology, Vol. 261, 1991, pp. H1300-H1311.
    [35] Giridharan, G. A., Ewert, D. L., Pantalos, G. M., et al., “Left Ventricular and Myocardial Perfusion Responses to Volume Unloading and Afterload Reduction in a Computer Simulation,"ASAIO Journal, Vol. 50, 2004, pp. 512-518.
    [36] Wang, J. J., O’Brien, A. B., Shrive, N. G., Parker, K. H., and Tyberg, J. V., “Time-Domain Representation of Ventricular-Arterial Coupling as a Windkessel and Wave System,” American Journal of Physiology Heart Circulatory Physiology, Vol. 284, 2003, pp. H1358-H1368.
    [37] Niederer, P., and Schilt, W., “Experimental and Theoretical Modeling of Intra-Aortic Balloon Pump Operation,” Medical and Biological Engineering and Computing, Vol. 26, 1988, pp. 167-174.
    [38] Ji, B., and Undar, A., “An Evaluation of the Benefits of Pulsatile versus Nonpulsatile Perfusion during Cardiopulmonary Bypass Procedures in Pediatric and Adult Cardiac Patients,” ASAIO Journal, Vol. 52, 2006, pp. 357-361.
    [39] Orime, Y., Shiono, M., Nakata, K., et al., “The Role of Pulsatility in End-Organ Microcirculation after Cardiogenic Shock,”ASAIO Journal, Vol. 42, 1996, pp. M724-729.
    [40] Rose, A., Park, S. J., Bank, A. J., and Miller, L. W., “Partial Aortic Value Fusion Induced by Left Ventricular Assist Device,” The Annals of Thoracic Surgery, Vol. 70, 2000, pp. 1270-4.
    [41] Undar, A., “Myths and Truths of Pulsatile and Nonpulsatile Perfusion During Acute and Chronic Cardiac Support,” Artificial Organ, Vol. 28, No. 5, 2004, pp. 439-443.
    [42] Moulopoulos, S. D., Topaz, S., Kolff, W., “Diastolic Balloon Pumping in the Aorta: A Mechanical Assistance to the Failing Circulation,” American Heart Journal, Vol. 63, 1962, pp. 69-675.
    [43] Kantrowitz, A., Tjonneland, S., Freed, P. S., Phillips, S. J., Butner, A. N., Sherman, J. L., “Intial Clinical Experience with Intra-Aortic Balloon Pumping in Cardiogenic Shock,” JAMA, Vol. 203, 1968, pp. 135-140.
    [44] Saavedra, W. F., Tunin, R. S., Paolocci, N., et al., “Reverse Remodeling and Enhanced Adrenergic Reserve From Passive External Support in Experimental Dilated Heart Failure,” Journal of the American College of Cardiology, Vol. 39, No. 12, 2002, pp. 2096-76.
    [45] Mancini, D., and Burkhoff, D., “Mechanical Device-Based Methods of Managing and Treating Heart Failure,” Circulation, Vol. 112, 2005, pp. 483-448.
    [46] Pieske, B., “Reverse Remodeling in Heart Failure-Fact or Fiction? ,” European Heart Journal, Vol. 6, Supplement D, 2004, pp. D66-D78.
    [47] Simon, M. A., Kormos, R. L., Murali, S., et al., “Myocardial Recovery Using Ventricular Assist Device: Prevalence, Clinical Characteristics, and Outcomes,” Circulation, Vol. 112, 2005, pp. 32-36.
    [48] Stergiopulos, N., Westerhof, B. E., and Westerhof, N.,“Total Arterial Inertance as the Fourth Element of the Windkessel Model,” American Journal of Physiology, Vol. 276, (Heart Circulatory Physiology 45) 1999, pp. H81-88.
    [49] Bolooki, H.,Clinical Application of the Intra-Aortic Balloon Pump, 3rd Ed., 1998, Futura Pulishing Company, Inc. Armonk, New York.
    [50] Wedterhof, N., Sipkema, P., Van Den Bos, G. C., and Elzinga, G., “Forward and Backward Waves in the Arterial System,” Cardiovascular Research, Vol. 6, 1972, pp. 648-656.

    下載圖示 校內:立即公開
    校外:2007-09-03公開
    QR CODE