簡易檢索 / 詳目顯示

研究生: 陳彥如
Chen, Yen-Ju
論文名稱: 以界面活性劑輔助水蒸餾萃取檸檬精油及應用之研究
Study of Surfactant-enhanced-hydrodistillation of Lemon Oil and its Applications
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 檸檬精油界面活性劑萃取反應曲面法抑菌活性包裝
外文關鍵詞: Lemon oil, Surfactant, Extraction, Response surface methodology (RSM), Antibacterial, Active package
相關次數: 點閱:167下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 檸檬精油儲存於檸檬皮的油腺細胞內,通常以冷壓榨法或水蒸餾法萃取而得,其成分中含有上百種有機物,以萜烯類為主,由於具有清新芳香的氣味以及良好的生物活性,在應用方面十分廣泛,例如芳香療法、抗菌劑、抗氧化劑、香水、營養品……等,普遍的商品應用使得檸檬精油需求量大增,因此檸檬精油的萃取效率逐漸成為重要的課題。本研究目的為提升檸檬精油萃取效能,並期望能使檸檬精油有良好的應用性,故選擇水蒸餾法萃取以利分離精油,使用混合界面活性劑Tween 40與Tween 85輔助以提高萃取效率,同時以反應曲面法的實驗設計,使實驗參數能有系統地達到最佳化。在應用方面,鑒於檸檬精油天然無毒且具有抗菌活性,故本研究以食品保鮮包裝為目的,添加精油於高分子薄膜中,探討其抗菌與機械性質。
    經過實驗設計得到界劑輔助萃取的最佳化條件為:界劑濃度為1545.5 ppm,萃取時間為156.3分鐘,液固重量比為15;驗證實驗也證實反應曲面法所建立模型的預測性,且最佳化條件下產率可提升至約2倍之多;以動力學模擬萃取過程,顯示界劑輔助法有較高的質傳係數,證實可改善萃取效能;以GC-FID分析精油中的六種主成分,比較不同萃取方法間精油組成的差異,結果表明界劑輔助法與一般水蒸餾法成分並無明顯差異;精油溶解度測試中,檸檬精油溶解度隨著界劑濃度呈線性增加,且溶解度高於市售檸檬精油,並在0.3wt%檸檬精油於5wt%界劑溶液的配方中,有最良好的穩定性;抑菌活性實驗結果顯示,檸檬精油對E. coli與S. aureus有抗菌性,且效果優於市售檸檬精油,而由殼聚糖/界面活性劑(CS)添加檸檬精油製成的薄膜中,對S. aureus展現抑菌效果。

    Recently, due to the good biological properties, the wide applications of lemon oil (LO) increase its demand. Thus, the efficiency of extracting lemon oil becomes a concerning topic. In this study, surfactant-enhanced-hydrodistillation with a mixture of Tween 40 and Tween 85 was employed to speed up the rate of LO extraction, as well as to separate LO easily. Also, response surface methodology (RSM) was applied to systematically optimize the parameters of extracting process, which were surfactant concentration, extracting time, and liquid/solid ratio in this study. The solubility and stability of LO emulsion were investigated for the application of LO-added polymer films as active packaging. Moreover, the antibacterial property of LO was evaluated.
    Results showed that the optimal condition was 1545.5 ppm as the concentration of surfactant Tween 40/Tween 85 mixed in 3/1, 156.3 min for extraction time, and liquid/solid ratio at 15. Under these conditions, according to the fitted second-order polynomial model, the response Y was predicted to be 30.14. A kinetics model simulated the extraction process and displayed a higher mass transfer coefficient in the presence of surfactant assisting. Composition analysis by GC-FID and HPLC indicated no difference between LOs from the two hydrodistillation processes. The solubility of LO appeared linear increasing with surfactant concentration and is was higher than commercial lemon oil (CLO) due to the different compositions. A microemulsion formed when 0.3% LO in 5% surfactant solution and can maintain its stability for more than 28 days. The antibacterial test illustrated the good activity of LO against E. coli and S. aureus, even better than CLO, in addition, the chitosan/surfactant film with LO showed antibacterial activity against S. aureus.

    摘要 II Extended Abstract III 致謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 植物精油簡介 3 2.1.1 精油的來源 4 2.1.2 檸檬精油 5 2.1.2.1 國產檸檬簡介 5 2.1.2.2 檸檬精油主要成分 7 2.1.2.3 檸檬精油生物活性 9 2.1.3 植物精油於食品包裝的應用 10 2.1.3.1 殼聚糖(Chitosan) 11 2.1.3.2 聚己內酯(Polycaprolactone, PCL) 12 2.2 精油萃取方法 12 2.2.1 蒸餾法(Distillation) 12 2.2.2 冷壓榨萃取法(Cold pressing) 14 2.2.3 溶劑萃取法(Solvent extraction) 14 2.2.4 超臨界萃取法(Supercritical fluid extraction) 14 2.2.5 微波萃取法(Microwave-assisted extraction) 15 2.3 界面活性劑簡介 16 2.3.1 界面活性劑種類 17 2.3.2 親油親水平衡(Hydrophile-lipophile balance, HLB) 18 2.3.3 微胞與臨界微胞濃度 19 2.3.4 乳化(Emulsification) 21 2.3.5 微乳液(Microemulsion) 21 2.3.6 界面活性劑協同作用 21 2.3.7 界面活性劑的篩選 22 2.4 實驗設計法 24 2.4.1 實驗設計基本原則 24 2.4.2 實驗設計的種類 25 2.4.2.1 一次一因子法(One-Factor-at-a-Time, OFAT) 25 2.4.2.2 多重因子設計法(Factorial design) 26 2.4.2.3 田口式方法(Taguchi method) 27 2.4.2.4 反應曲面法(Response surface methodology, RSM) 29 2.5 精油之抑菌活性試驗 33 2.5.1 抑菌活性試驗方法 33 2.5.1.1 擴散法(Diffusion method) 33 2.5.1.2 稀釋法(Dilution method) 34 2.5.2 試驗菌種介紹 36 第三章 研究方法 38 3.1 實驗架構 38 3.2 實驗藥品 39 3.3 實驗儀器 41 3.4 實驗方法 42 3.4.1 檸檬精油萃取 42 3.4.1.1 檸檬前處理 42 3.4.1.2 水蒸餾法 42 3.4.2.3 溶劑萃取法 43 3.4.2 檸檬精油主要成分分析及檢量線製作 43 3.4.3 實驗設計法 46 3.4.3.1 初步試驗選擇因子與水準 46 3.4.3.2 反應曲面法與面中心中央合成設計 46 3.4.3.3 反應曲面法資料分析 47 3.4.3.4 驗證實驗 48 3.4.4 界面活性劑於精油之研究 49 3.4.4.1 溶解度測試 49 3.4.4.2 乳液之粒徑分布及穩定度 49 3.4.5 檸檬精油添加於高分子薄膜之研究 50 3.4.5.1 薄膜製備 50 3.4.5.2 機械性質分析 51 3.4.5.3 微結構分析 51 3.4.5.4 水蒸氣滲透率測試(Water vapor permeability, WVP) 52 3.4.6 抗菌性試驗 52 第四章 結果與討論 54 4.1 實驗設計法 54 4.1.1 初步試驗 54 4.1.1.1 檸檬皮尺寸對反應值的影響 54 4.1.1.2 界面活性劑混和比例與濃度對反應值的影響 55 4.1.1.3 萃取時間對反應值的影響 56 4.1.1.4 液固比例對反應值的影響 57 4.1.1.5 反應因子與水準選擇 58 4.1.2 反應曲面法 58 4.1.2.1 模型分析 59 4.1.2.2 最佳化條件預測 62 4.1.3 模型驗證 63 4.2 添加界面活性劑對萃取效能之影響 64 4.2.1 動力學模型 64 4.2.2 最佳化條件與水蒸餾法之比較 66 4.3 檸檬精油成分分析 67 4.3.1 主成分與檢量線 67 4.3.2 精油組成與萃取方法比較 68 4.3.3 精油產率與季節比較 71 4.4 界面活性劑於精油之研究 73 4.4.1 溶解度測試 73 4.4.2 乳液粒徑分布 75 4.4.3 乳液穩定度測試 77 4.5 抗菌活性試驗 79 4.6 檸檬精油的應用--高分子薄膜之研究 82 4.6.1 機械性質分析 82 4.6.2 水蒸氣滲透率 86 4.6.3 綜合比較 87 第五章 結論與建議 90 5.1 結論 90 5.2 建議 92 參考文獻 93 附錄 99 附錄A. F分配表 99 附錄B. 卡方分配表 100 附錄C. 檸檬精油主成分之GC圖譜與檢量線 101 附錄D. HPLC分析圖譜 108 附錄E. 溶解度與穩定度實驗之溶液外觀 109 附錄F. 薄膜樣品分析 110

    Abdollahi, M., Rezaei, M., & Farzi, G., Improvement of active chitosan film properties with rosemary essential oil for food packaging. International journal of food science & technology, 47(4), 847-853. (2012).

    Acharya, T., E-TEST (Epsilometer test): Principle, purpose, procedure, results and interpretations. Diakses Pada Tanggal, 1. (2018).

    Agneta, M., Zhaomin, L., Chao, Z., & Gerald, G., Investigating synergism and antagonism of binary mixed surfactants for foam efficiency optimization in high salinity. Journal of Petroleum Science and Engineering, 175, 489-494. (2019).

    Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., ... & Lv, L., A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178. (2017).

    Americas, I. C. I., The HLB system: a time-saving guide to emulsifier selection. ICI Americas, Incorporated. (1984).

    Anderson, M. J., & Whitcomb, P. J., Design of experiments. Kirk‐Othmer Encyclopedia of Chemical Technology, 1-22. (2000).

    ASTM E96‐00, Standard test methods for water vapor transmission of materials. Philadelphia, PA: American Society for Testing and Materials. (2002).

    Ávila, D. S. C., Holz, J. P., Carone, C. L. P., Morisso, F. D., & Ligabue, R. A., Microcapsules PCL with essential oil citronella. Adv Tissue Eng Regen Med Open Access, 2(2), 00024. (2017).

    Baldwin, E. A., Nisperos, M. O., Hagenmaier, R. H., & Baker, R. A., Use of lipids in edible coatings for food products. Food Technol, 51(6), 56-62. (1997).

    Balouiri, M., Sadiki, M., & Ibnsouda, S. K., Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79. (2016).

    Baratta, M. T., Dorman, H. D., Deans, S. G., Figueiredo, A. C., Barroso, J. G., & Ruberto, G., Antimicrobial and antioxidant properties of some commercial essential oils. Flavour and fragrance journal, 13(4), 235-244. (1998).

    Bergström, M., & Eriksson, J. C., Synergistic effects in binary surfactant mixtures. In Trends in Colloid and Interface Science XVI (pp. 16-22). Springer, Berlin, Heidelberg. (2004).

    Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A., Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food hydrocolloids, 26(1), 9-16. (2012).

    Braunschweig R.V., 溫佑君(譯). 精油圖鑑: 城邦文化事業股份有限公司. (2003)

    Burt, S., Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, 94(3), 223-253. (2004).

    Choi, W. Y., Lee, C. M., & Park, H. J., Development of biodegradable hot-melt adhesive based on poly-ε-caprolactone and soy protein isolate for food packaging system. LWT-Food Science and Technology, 39(6), 591-597. (2006).

    Chu, B., Dynamic light scattering. Soft matter characterization, 335-372. (2008).

    Daglia, M., Cuzzoni, M. T., & Dacarro, C., Antibacterial activity of coffee. Journal of Agricultural and Food Chemistry, 42(10), 2270-2272. (1994).

    Destandau, E., Michel, T., & Elfakir, C., Microwave-assisted extraction. Natural product extraction: principles and applications, (21), 113. (2013).

    Di Vaio, C., Graziani, G., Gaspari, A., Scaglione, G., Nocerino, S., & Ritieni, A., Essential oils content and antioxidant properties of peel ethanol extract in 18 lemon cultivars. Scientia Horticulturae, 126(1), 50-55. (2010).

    Espina, L., Gelaw, T. K., de Lamo-Castellvi, S., Pagán, R., & Garcia-Gonzalo, D., Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PloS one, 8(2). (2013).

    Ferhat, M. A., Meklati, B. Y., & Chemat, F., Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’distillation. Flavour and Fragrance Journal, 22(6), 494-504. (2007).

    Gupta, V. K., & Parsad, R., Fundamentals of design of experiments. IASRI library avenue, New Delhi, 1-44. (2012).

    Gutiérrez, L., Sánchez, C., Batlle, R., & Nerín, C., New antimicrobial active package for bakery products. Trends in Food Science & Technology, 20(2), 92-99. (2009).

    Han, J. W., Ruiz‐Garcia, L., Qian, J. P., & Yang, X. T., Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4), 860-877. (2018).

    Hsouna, A. B., Trigui, M., Mansour, R. B., Jarraya, R. M., Damak, M., & Jaoua, S., Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International journal of food microbiology, 148(1), 66-72. (2011).

    Komives, C. F., Lilley, E., & Russell, A. J., Biodegradation of pesticides in nonionic water‐in‐oil microemulsions of tween 85: Relationship between micelle structure and activity. Biotechnology and bioengineering, 43(10), 946-959. (1994).

    Kumar, P., & Mittal, K. L. (Eds.). Handbook of microemulsion science and technology. CRC press. (1999).

    Lee, K. S., & Lee, J. H., Hybrid Enhanced Oil Recovery Using Smart Waterflooding. Gulf Professional Publishing. (2019).

    Li, J. L., & Chen, B. H., Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chemical engineering science, 57(14), 2825-2835. (2002).

    Li, Z. H., Cai, M., Liu, Y. S., Sun, P. L., & Luo, S. L., Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules, 24(8), 1577. (2019).

    Lins, R. F., Lustri, W. R., Minharro, S., Alonso, A., & de Sousa Neto, D., On the formation, physicochemical properties and antibacterial activity of colloidal systems containing tea tree (Melaleuca alternifolia) oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 271-279. (2016).

    Mahmood, M. E., & Al-Koofee, D. A., Effect of temperature changes on critical micelle concentration for tween series surfactant. Global Journal of Science Frontier Research Chemistry, 13(4), 1-7. (2013).

    Mandavi, R., Sar, S. K., & Rathore, N., Critical micelle concentration of surfactant, mixed–surfactant and polymer by different method at room temperature and its importance. Oriental Journal of Chemistry, 24(2), 559-564. (2008).

    Mattox, D. M., Film characterization and some basic film properties. Handbook of Physical Vapor Deposition (PVD) Processing; Mattox, DM, Ed, 569-615. (1998).

    Milojević, S. Ž., Radosavljević, D. B., Pavićević, V. P., Pejanović, S., & Veljković, V. B., Modeling the kinetics of essential oil hydrodistillation from plant materials. Hemijska industrija, 67(5), 843-859. (2013).

    Mokarizadeh, M., Kafil, H. S., Ghanbarzadeh, S., Alizadeh, A., & Hamishehkar, H., Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Research in pharmaceutical sciences, 12(5), 409. (2017).

    Peng, Y., & Li, Y., Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293. (2014).

    Rahman, A., & Kang, S. C., In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb. Food Chemistry, 116(3), 670-675. (2009).

    Rao, J., & McClements, D. J., Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food chemistry, 134(2), 749-757. (2012).

    Salmieri, S., & Lacroix, M., Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. Journal of Agricultural and Food Chemistry, 54(26), 10205-10214. (2006).

    Sangwan, N. S., Farooqi, A. H. A., Shabih, F., & Sangwan, R. S., Regulation of essential oil production in plants. Plant growth regulation, 34(1), 3-21. (2001).

    Spadaro, F., Circosta, C., Costa, R., Pizzimenti, F., Palumbo, D. R., & Occhiuto, F., Volatile fraction composition and biological activity of lemon oil (Citrus limon L. Burm.): Comparative study of oils extracted from conventionally grown and biological fruits. Journal of Essential Oil Research, 24(2), 187-193. (2012).

    Stanisavljević, I. T., Lazić, M. L., Veljković, V. B., Stojičević, S. S., Veličković, D. T., & Ristić, M. S., Kinetics of hydrodistillation and chemical composition of essential oil from cherry laurel (Prunus laurocerasus L. var. serbica Pančić) leaves. Journal of Essential Oil Research, 22(6), 564-567. (2010).

    Steven, M. D., & Hotchkiss, J. H., Comparison of flat film to total package water vapour transmission rates for several commercial food wraps. Packaging Technology and Science: An International Journal, 15(1), 17-27. (2002).

    Tadros, T. F., Applied surfactants: principles and applications. John Wiley & Sons. (2006).

    Tirado, C. B., Stashenko, E. E., Combariza, M. Y., & Martinez, J. R., Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 697(1-2), 501-513. (1995).

    Vasile, C., & Sivertsvik, M. (Eds.). Food Packaging: Materials and Technologies. MDPI. (2019).

    Verma, D. K., & Goyal, M. R. (Eds.). Engineering Interventions in Foods and Plants. CRC Press. (2017).

    Wan, L. S., & Lee, P. F., CMC of polysorbates. Journal of pharmaceutical sciences, 63(1), 136-137. (1974).

    Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S., Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289. (2016).

    Ziani, K., Fang, Y., & McClements, D. J., Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food chemistry, 134(2), 1106-1112. (2012).

    于新, 李小華主編,天然食品添加劑:中國輕工業出版社, 141-144. (2014).

    中華民國交通部中央氣象局 氣象資料, 2020 (https://www.cwb.gov.tw/V8/C/C/Statistics/monthlydata.html)

    刈米孝夫. 界面活性劑的原理與應用: 高立圖書有限公司. (1989).

    行政院農業委員會. 農產品生產量值統計. (2019). (https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx)

    何振隆, 蘇裕昌. 精油之抗菌活性. 林業研究專訊, 15(3), 31-37. (2008).

    周容萱. 界面活性劑 Tween 80 於水蒸餾萃取茶樹精油之最佳化研究. 成功大學化學工程學系學位論文. (2019).

    易光輝, 王曉芬, 李依倩. 精油之化學基礎與實務應用. 華杏. (2008).

    黃莉貽. 以食品級界面活性劑萃取檸檬皮精油及其應用之研究. 成功大學化學工程學系學位論文, 1-141. (2017).

    楊沛子. 反應曲面法設計界面活性劑萃取茶樹精油最佳化之研究. 成功大學化學工程學系學位論文. (2018).

    廖信昌. 柑橘精油應用於環衛害蟲之防除. 農業世界, 178, 60-64. (1998).

    趙承琛. 界面科學基礎: 復文書局. (1993).

    黎正中、陳源樹編譯. 實驗設計與分析(初版) : 高立圖書有限公司. (2006).

    謝博銓. 天然精油的抽提工藝. 科學發展, 469, 10-13. (2012).

    蘇朝墩. 專訪世界品質大師 田口玄一博士. (2004).

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE