| 研究生: |
王俊凱 Wang, Chun-Kai |
|---|---|
| 論文名稱: |
軸對稱雙材料楔形結構之應力奇異性分析 Stress Singularity Analysis in Axisymmetric Two-Material Wedges. |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 軸對稱結構 、應力奇異性 、壓電材料 |
| 外文關鍵詞: | Stress Singularity, Piezoelectric Material, Axisymmetric Structure |
| 相關次數: | 點閱:188 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將探討軸對稱雙壓電楔形結構之奇異性,包含兩個部分(1)以理論分析求解應力奇異性階數及角函數(2)應力及電位移強度因子之數值解。由於應力奇異性階數會受材料性質、楔形角和楔形邊界條件的影響。我們將利用複變函數配合特徵函數展開法分析軸對稱雙材料楔形結構之應力奇異性。在求得應力奇異性階數後就可利用有限元素法求得應力與電位移強度因子。
分析之接合楔形為壓電材料-壓電材料和壓電材料-導體材料兩種。由數值結果得知軸對稱之應力奇異性階數與廣義平面應變相等。利用有限元素法所逼近之應力奇異性階數與理論值比較,可判定有限元素網格的正確性,並配合已知的角函數求得應力及電位移強度因子。
This paper deals with the singular behaviors of an axisymmetric two-piezoelectric material wedge structure. It contains two parts (1) the theoretical determination of stress singularity order and the angular functions, and (2) the numerical solutions of generalized stress and electric displacement intensity factors. The stress singularity orders depending on the material properties, the wedge angle and wedge boundary conditions are obtained by employing the eigenfunction expansion method on complex potential function. After obtaining the singularity orders, the stress and electric displacement intensity factors are computed by using the finite element method.
Two cases studied in this paper are piezoelectric-piezoelectric and piezoelectric-conductor wedges. The results show that the singularity orders for the cases of general plane strain deformation and axisymmetric deformation are the same. The results of angular functions are shown graphically for a 900-900 axisymmetric wedge. After the finite element meshes are validated from the theoretical singularity order, the generalized intensity factors are computes by using the associated angular function.
[1] Williams, M. L., Stress singularities resulting from various boundary conditions in angular corners of plates in tension, Journal of Applied Mechanics, Vol. 19, pp. 526-528, 1952.
[2] Sosa, H., Plane problems in piezoelectric media with defects, International Journal of Solids and Structures, Vol. 28, pp. 491-505, 1991.
[3] Lekhnitskii, S. G., Theory of elasticity of an anisotropic elastic body, Holden-Day, New York, 1963.
[4] Chen, T. and Lai, D., An exact correspondence between plane piezoelectricity and generalized plane strain in elasticity, Proceeding of Royal Society London, A 453, pp. 2689-2713, 1997.
[5] Chen, T. and Yen, W. J., Piezoelectric analogy of generalized torsion in anisotropic elasticity, Journal of Elasticity, Vol.49, pp. 239-256, 1998.
[6] Barnett, D. M. and Lothe, J., Dislocations and line charges in anisotropic piezoelectric insulators, Physically Status Solid, Vol. 67, pp. 105-111, 1975.
[7] Stroh, A. N., Steady state problems in anisotropic elasticity, Journal of Mathematical Physics, Vol. 41, pp. 77-103, 1962.
[8] Sosa, H. A. and Pak, Y. E., Three-dimensional eigenfunction analysis of a crack in a piezoelectric material, International Journal of Solids and Structures, Vol. 26, pp. 1-15, 1990.
[9] Kuo, C. M. and Barnett, D. M., Stress singularities of interfacial cracks in bonded piezoelectric half-spaces, Modern Theory of Anisotropic Elasticity and Applications SIAM, pp. 33-51, 1991.
[10] Chung, M. Y. and Ting, T. C. T., Line force charge and dislocation in anisotropic piezoelectric composite wedges and spaces, Transaction of the ASME Journal of Applied Mechanics, Vol. 62, pp. 423-428, 1995.
[11] Ting, T. C. T., Jin, Y. and Chou, S. C., Eigenfunctions at a singular point in transversely isotropic materials under axisymmetric deformations, Journal of Applied Mechanics, Vol. 52, pp.565-569, 1985.
[12] Noda, N. and Tsuji, T., Stress singularities in edge-bonded dissimilar wedges, Trans JSME (in Japanese), Vol.58, pp. 123-126, 1992.
[13] Li, Y. L., Hu, S. Y. and Yang, Y. Y., Stresses around the bond edge of
axisymmetric deformation joints, Engineering Fracture Mechanicals, Vol. 66, pp. 153-170, 2000.
[14] Li, Y. L., Hu, S. Y., Munz, D. and Yang, Y. Y., Asymptotic description of the stress field around the bonded edge of cylindrical joint, Archive of Applied Mechanics, Vol. 68, pp. 552-565, 1998.
[15] Xu, J. Q. and Mutoh, Y., Singularity at the interface edge of bonded transversely isotropic piezoelectric dissimilar materials, JSME International Journal, Vol. 44, pp.556-566, 2001.
[16] Nistitani, H., Two Dimensional Problem Solved Using a Digital Computer, Journal of the Japan Society of Mechanical Engineers, Vol. 70, pp. 627-635, 1967.
[17] Whitcomb, J. D. and Raju, I. S., Reliability of the Finite Element Method for Calculating Free Edge Stresses in Composite Laminates, Computers and Structures, Vol. 15, pp. 23-27, 1982.
[18] Yuuki, R. and Xu, J. Q., Logarithmic Singularity on Thermal or Residual Stress at the Interface Edge Point of Bonded Dissimilar Materials, Transaction of Japan Society of Mechanical Engineering, A, Vol. 58, pp. 2394-2400, 1992.
[19] Munz, D. and Yang, Y. Y., “Stress near the edge of Bonded Dissimilar Materials Described by Tow Stress Intensity Factors”, International Journal of Fracture, Vol. 60, pp. 169-177, 1993.
[20] Tilscher, M., Munz, D. and Yang, Y. Y., The Stress Intensity Factor in Bonded Quarter Planes after a Change in Temperature”, Journal or Adhesion, Vol. 49, pp. 1-21, 1995.
[21] Chen, C. D. and Chue, C. H., Singular stresses near apex of wedge by finite element analysis. Journal of the Chinese Institute of Engineers 26, 423-434, 2003.
[22] Li, Y. L., Sato, Y. and Watanabe, K., Stress singularity analysis of axisymmetric piezoelectric bonded structure, JSME International Journal, Vol. 45, pp.363-370, 2002.
[23] Suo, Z., Kuo, C.M., Barnett, D. M., and Willis, J. R., Fracture mechanics for piezoelectric ceramics, Journal of the Mechanics and Physics of Solids, Vol. 40, pp739-765, 1992
[24] Hildebrand, F. B., Methods of applied mathematics, Prentice-Hall, N. J., 1954.
[25] Lin, K. Y. and Hartmann, H. H., Numerical analysis of stress singularities at a bonded anisotropic wedge, Engineering Fracture Mechanics, Vol. 32, pp. 211-224, 1989.
[26] Chue, C. H. and Chen, C. D., Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems. International Journal of Solids and Structures, Vol. 39, 3131-3158, 2002.