| 研究生: |
張喬淳 Chang, Chiao-Chun |
|---|---|
| 論文名稱: |
半乳糖改變肝腫瘤細胞氧化壓力與蘋果酸-天門冬胺酸運輸器相關代謝之研究 Galactose enhances oxidative stress and alters metabolism of malate-aspartate shuttle in hepatoma cells |
| 指導教授: |
謝淑珠
Shiesh, Shu-Chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 蘋果酸-天門冬胺酸運輸器 、半乳糖 、精胺丁二酸合成酶 、檸檬素 |
| 外文關鍵詞: | Malate-aspartate shuttle, Galactose, Argininosuccinate synthetase, citrin |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蘋果酸(malate)-天門冬胺酸(aspartate)(MA)運輸器由多種載體及酵素組合而成,包含α-酮戊二酸(oxoglutarate)-蘋果酸載體蛋白、天門冬胺酸-榖胺酸(glutamate)、蘋果酸脫氫酶以及天門冬胺酸胺基轉移酶。MA運輸器可將細胞質的電子傳送到粒線體,以維持細胞內氧化還原之平衡。臨床上檸檬素(citrin)缺乏會導致新生兒膽汁淤積症與第二型瓜胺酸血症,而這些疾病的症狀,例如像高血氨症、瓜胺酸血症等,多與MA運輸器之代謝有關。但目前對於新生兒膽汁淤積的患者為何會進一步發展為第二型瓜安酸血症的機制仍不清楚。臨床上發現檸檬素缺乏的病人多半不喜歡醣類食物且有半乳糖血症。近來也有研究指出第二型瓜胺酸血症的病人若食用醣類食物則會使病程加重甚至可能加速病人死亡。我們假設半乳糖的低糖解效率造成氧化壓力並進一步影響了MA運輸器的代謝。因此,本篇研究的目的就是要探討半乳糖對肝腫瘤細胞之MA運輸器相關代謝的影響。我們將一般或檸檬素缺乏的HepG2 及Huh-7 細胞培養在不同的培養液中,包含25 mM高濃度葡萄糖、12.5 mM葡萄糖及半乳糖各半之混合液、10 mM低濃度半乳糖與25 mM高濃度半乳糖四種培養液。經72小時培養後,接著分析細胞內氧化壓力與MA運輸器相關代謝物的變化。以西方點墨法分析半乳糖對精胺丁二酸合成酶(argininosuccinate synthetase, ASS)蛋白表現的影響;細胞中三磷酸腺苷濃度和培養液中乳糖脫氫酶活性反映細胞存活率;並檢測粒線體中超氧化物的濃度以反應氧化壓力。MA運輸器相關代謝物,包括天門冬胺酸、榖胺酸、蘋果酸及琥珀酸(succinate)則利用液相層析質譜儀檢測其變化。另外,以酵素法檢測培養液中氨、乳糖與丙酮酸的濃度。無論檸檬素缺乏與否,在HepG2 及Huh-7 細胞中,半乳糖會導致精胺丁二酸合成酶 (p<0.01) 與細胞存活率明顯降低 (p<0.01)、提升培養液中乳糖脫氫酶活性(p<0.005)。而調控半乳糖代謝的第一酵素:半乳糖激酶,在給予半乳糖培養的組別中表現量也下降,顯示細胞在半乳糖培養下有較低的糖解活性。細胞粒線體內超氧化物濃度也因為半乳糖的給予而明顯增加(p<0.05)。此外,半乳糖會降低細胞內乳糖(66.0±9.4在葡萄糖培養 vs. 15.6±2.4 mmol/g在半乳糖培養, p<0.01)與榖胺酸濃度(138.8±11.3 vs. 91.76±3.1 μmol/g, p<0.05),並使天門冬胺酸(5.1±0.1 vs.9.1±0.1 μmol/g, p<0.005)及天門冬胺酸與榖胺酸比值(37.5±2.8 vs. 99.4±2.3, p<0.005)上升。培養液內氨濃度則因半乳糖而堆積(p<0.05),丙酮酸與乳糖則減少(p<0.005)。給予丙酮酸、精胺酸、N-乙醯基半胱胺酸或甘胺酸可有效提升細胞存活率、培養液乳糖與丙酮酸濃度。其中,只有丙酮酸能有效回復榖胺酸及天門冬胺酸與榖胺酸比值。總結來說,我們的研究顯示半乳糖的低糖解效率會使細胞內氧化壓力增加,並進一步降低精胺丁二酸合成酶的表現,同時干擾MA運輸器相關之代謝;而丙酮酸、N-乙醯基半胱胺酸、苷胺酸或精胺酸可做為檸檬素缺乏患者的新治療策略,其中又以丙酮酸為最有效的治療方式。
Malate-aspartate shuttle (MAS) consists of several carriers and enzymes including oxoglutarate malate carrier, aspartate glutamate carrier, malate dehydrogenase and aspartate aminotransferase. It plays a critical role in regulating cellular redox balance via transporting cytosolic electrons into mitochondria. Citrin deficiency is associated with neonatal intrahepatic cholestasis and adult-onset type II citrullinemia. The outcomes, such as hyperammonemia and citrullinemia, are related to metabolism of MA shuttle. However, the mechanism of disease progression remains unknown. Patients with citrin deficiency usually dislike intake of carbohydrate and suffer from galactosemia. Studies showed that use of carbohydrates exacerbated the symptoms and led to early death in CTLN2 patients. We hypothesized that galactose with low efficiency of glycolysis may cause intracellular stress leading to alters MA shuttle. Thus, in this study, we aimed to investigate the role of galactose on cell metabolism related to MAS in hepatoma cells. HepG2 and Huh-7 cells with or without citrin knockdown (KD) were grown in 25 mM glucose-, 12.5 mM glucose with 12.5 mM galactose-, 10 mM galactose- or 25 mM galactose-supplemented DMEM medium. After 72 hours incubation, the effects of galactose on the oxidative stress and MAS-related metabolites of cells were analyzed. Argininosuccinate synthetase (ASS) protein levels were detected by western blotting, cell viability by ATP levels and culture medium lactate dehydrogenase (LDH) activity and oxidative stress by mitochondrial superoxide. MAS-related metabolites, aspartate, glutamate, malate and succinate were analyzed using liquid chromatography-tandem mass spectrometry. Culture medium ammonium, LDH, lactate and pyruvate were measured by enzymatic methods. HepG2 or Huh-7 cells with or without citrin-KD growing in galactose-supplemented medium had decreased cytosolic ASS protein levels (p<0.01), lower cell viability (p<0.01) and increased culture medium LDH activities (p<0.005). Galactokinase, the first enzyme involved in galactose metabolism, was decreased, indicating low glycolytic activity in galactose-fed cells. Mitochondrial superoxide levels were significantly increased when cells grown in galactose-supplemented medium (p<0.05). Furthermore, the decreased intracellular lactate (66.0±9.4 vs. 15.6±2.4 mmol/g, p<0.01) and glutamate (138.8±11.3 vs. 91.76±3.1 μmol/g, p<0.05) and the increased aspartate (5.1±0.1 vs.9.1±0.1 μmol/g, p<0.005) and the ratio of aspartate to glutamate (37.5±2.8 vs. 99.4±2.3, p<0.005) were found in galactose-treated cells. Levels of ammonia in culture medium were increased (p<0.05), but pyruvate and lactate were decreased (p<0.005) in cells grown in galactose-supplemented medium. The treatment of pyruvate, NAC, glycine or arginine was effective in increasing cell viability, culture medium lactate and pyruvate. However, only the supplement of pyruvate ameliorated the level of glutamate and aspartate to glutamate ratio to normal. In conclusion, our finding suggested that low glycolytic efficiency of galactose increase oxidative stress and further decrease ASS protein levels and disturbed the metabolism of MAS. Moreover, pyruvate, NAC, glycine or arginine can be beneficial for treating patient with citrin deficiency, and pyruvate may be the most efficient strategy.
1. Aguer C, Gambarotta D, Mailloux R J, Moffat C, Dent R, McPherson R, and Harper ME. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One 2011;6:e28536.
2. Marroquin LD, Hynes J, Dykens JA, Jamieson JD, and Will Y. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 2007;97:539-47.
3. Shulga N, Wilson-Smith R, and Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 2010;123:894-902.
4. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, and Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 2004;64:985-93.
5. Rana P, Nadanaciva S, and Will Y. Mitochondrial membrane potential measurement of H9c2 cells grown in high-glucose and galactose-containing media does not provide additional predictivity towards mitochondrial assessment. Toxicol In Vitro 2011;25:580-7.
6. Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, and Will Y. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 2008;233:203-10.
7. Ai Y, Zheng Z, O’Brien-Jenkins A, Bernard D J, Wynshaw-Boris T, Ning C, Reynolds R, Segal S, Huang K, and Stambolian D. A mouse model of galactose-induced cataracts. Hum Mol Genet 2000;9:1821-1827.
8. Wei H, Li L, Song Q, Ai H, Chu J, and Li W. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res 2005;157:245-51.
9. Strother RM, Thomas TG, Otsyula M, Sanders RA, and Watkins JB, 3rd. Characterization of oxidative stress in various tissues of diabetic and galactose-fed rats. Int J Exp Diabetes Res 2001;2:211-6.
10. Ajani EO AO, Salau BA, Osineye PO, Adeyanju MM and Aro OK. Comparative study of tissue oxidative stress in hydrocotylbonarienssis treated rats fed with dietary galactose. J Biol EnvironSci 2008;2:15-21.
11. A D-O T. A study on the oxidative properties of dietary galactoseon reduced glutathione (GSH) in experimental rats.Int J Educ Res 2013;1:19-22.
12. Aruoma O. Free radicals, oxidative stress, and antioxidants in human health and disease. JAm Oil Chem Soc 1998;75:199-212.
13. Waisbren SE, Potter NL, Gordon CM, Green RC, Greenstein P, Gubbels CS, Rubio-Gozalbo E, Schomer D, Welt C, Anastasoaie V, et al. The adult galactosemic phenotype. J Inherit Metab Dis 2012;35:279-86.
14. Fridovich-Keil JL, Gubbels CS, Spencer JB, Sanders RD, Land JA, and Rubio-Gozalbo E. Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis 2011;34:357-66.
15. Bosch AM, Bakker HD, van Gennip AH, van Kempen JV, Wanders RJ, and Wijburg FA. Clinical features of galactokinase deficiency: a review of the literature. J Inherit Metab Dis 2002;25:629-34.
16. Openo KK, Schulz JM, Vargas CA, Orton CS, Epstein MP, Schnur RE, Scaglia F, Berry GT, Gottesman GS, Ficicioglu C, Slonim AE, Schroer RJ, Yu C, Rangel VE, Keenan J, Lamance K, and Fridovich-Keil JL. Epimerase-deficiency galactosemia is not a binary condition. Am J Hum Genet 2006;78:89-102.
17. Lai K, Elsas LJ, and Wierenga KJ. Galactose toxicity in animals. IUBMB Life 2009;61:1063-74.
18. Mason EF and Rathmell JC. Cell metabolism: an essential link between cell growth and apoptosis.Biochim Biophys Acta 2011;1813:645-54.
19. Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, Moriyama M, Hsiao KJ, and Yang Y. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 2004;81 Suppl 1:S20-6.
20. Satrustegui J, Pardo B, and Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 2007;87:29-67.
21. Iijima M, Jalil A, Begum L, Yasuda T, Yamaguchi N, Xian Li M, Kawada N, Endou H, Kobayashi K, and Saheki T. Pathogenesis of adult-onset type II citrullinemia caused by deficiency of citrin, a mitochondrial solute carrier protein: tissue and subcellular localization of citrin. Adv Enzyme Regul 2001;41:325-42.
22. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2013;34:465-84.
23. Barron JT, Gu L, and Parrillo JE. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle. J Mol Cell Cardiol 1998;30:1571-9.
24. Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, and Yu X. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. J Theor Biol 2008;254:466-75.
25. Saheki T, Kobayashi K, Iijima M, Moriyama M, Yazaki M, Takei Y, and Ikeda S. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res 2005;33:181-4.
26. Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, and Satrustegui J. Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem 2007;282:7098-106.
27. Kobayashi K, Sinasac D S, Iijima M, Boright AP, Begum L, Lee JR, Yasuda T, Ikeda S, Hirano R, Terazono H, Crackower MA, Kondo I, Tsui LC, Scherer S W, and Saheki T. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 1999;22:159-63.
28. Saheki T and Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 2002;47:333-41.
29. Dimmock D, Maranda B, Dionisi-Vici C, Wang J, Kleppe S, Fiermonte G, Bai R, Hainline B, Hamosh A, O'Brien WE, Scaglia F, and Wong LJ. Citrin deficiency, a perplexing global disorder. Mol Genet Metab 2009;96:44-9.
30. Saheki T, Inoue K, Tushima A, Mutoh K, and Kobayashi K. Citrin deficiency and current treatment concepts. Mol Genet Metab 2010;100 Suppl 1:S59-64.
31. Hayasaka K, Numakura C, Toyota K, Kakizaki S, Watanabe H, Haga H, Takahashi H, Takahashi Y, Kaneko M, Yamakawa M, Nunoi H, Kato T, Ueno Y, and Mori M. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia.Mol Genet Metab Rep 2014;1:42-50.
32. Ngu H L, Zabedah M Y, and Kobayashi K. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) in three Malay children. Malays J Pathol 2010;32:53-7.
33. Liu G, Wei X, Chen R, Zhou H, Li X, Sun Y, Xie S, Zhu Q, Qu N, Yang G, Chu Y, Wu H, Lan Z, Wang J, Yang Y, and Yi X. A novel mutation of the SLC25A13 gene in a Chinese patient with citrin deficiency detected by target next-generation sequencing. Gene 2014;533:547-53.
34. Song YZ, Zhang ZH, Lin WX, Zhao XJ, Deng M, Ma YL, Guo L, Chen FP, Long XL, He XL, Sunada Y, Soneda S, Nakatomi A, Dateki S, Ngu LH, Kobayashi K, and Saheki T. SLC25A13 gene analysis in citrin deficiency: sixteen novel mutations in East Asian patients, and the mutation distribution in a large pediatric cohort in China. PLoS One 2013;8:e74544.
35. Tomomasa T, Kobayashi K, Kaneko H, Shimura H, Fukusato T, Tabata M, Inoue Y, Ohwada S, Kasahara M, Morishita Y, Kimura M, Saheki T, and Morikawa A. Possible clinical and histologic manifestations of adult-onset type II citrullinemia in early infancy. J Pediatr 2001;138:741-3.
36. Ohura T, Kobayashi K, Tazawa Y, Abukawa D, Sakamoto O, Tsuchiya S, and Saheki T. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 2007;30:139-44.
37. Dimmock D, Kobayashi K, Iijima M, Tabata A, Wong LJ, Saheki T, Lee B, and Scaglia F. Citrin deficiency: a novel cause of failure to thrive that responds to a high-protein, low-carbohydrate diet. Pediatrics 2007;119:e773-7.
38. Palmieri F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 2014;37:565-75.
39. Nagasaka H, Okano Y, Tsukahara H, Shigematsu Y, Momoi T, Yorifuji J, Miida T, Ohura T, Kobayashi K, Saheki T, Hirano K, Takayanagi M, and Yorifuji T. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab 2009;97:21-6.
40. Palmieri F. Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 2008;1777:564-78.
41. Saheki T, Inoue K, Ono H, Tushima A, Katsura N, Yokogawa M, Yoshidumi Y, Kuhara T, Ohse M, Eto K, Kadowaki T, Sinasac D S, and Kobayashi K. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency. Mol Genet Metab 2011;104:492-500.
42. Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, Li MX, Ushikai M, Iijima M, Kondo I, and Saheki T. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 2000;107:537-545.
43. Sinasac DS, Moriyama M, Jalil MA, Begum L, Li MX, Iijima M, Horiuchi M, Robinson BH, Kobayashi K, Saheki T, and Tsui L C. Slc25a13-Knockout Mice Harbor Metabolic Deficits but Fail To Display Hallmarks of Adult-Onset Type II Citrullinemia. Mol Cell Biol 2003;24:527-536.
44. Saheki T, Iijima M, Li M X, Kobayashi K, Horiuchi M, Ushikai M, Okumura F, Meng XJ, Inoue I, Tajima A, Moriyama M, Eto K, Kadowaki T, Sinasac DS, Tsui L C, Tsuji M, Okano A, and Kobayashi T. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J Biol Chem 2007;282:25041-52.
45. Saheki T, Kobayashi K, Iijima M, Nishi I, Yasuda T, Yamaguchi N, Gao H Z, Jalil M A, Begum L, and Li M X. Pathogenesis and pathophysiology of citrin (a mitochondrial aspartate glutamate carrier) deficiency. Metab Brain Dis 2002;17:335-46.
46. Yazaki M, Takei Y, Kobayashi K, Saheki T, and Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult-onset type II citrullinemia (CTLN2). Intern Med 2005;44:188-95.
47. Clancy RR and Chung HJ. EEG changes during recovery from acute severe neonatal citrullinemia. Electroencephalogr Clin Neurophysiol 1991;78:222-7.
48. Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, and Felipo V. Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 1997;27:637-44.
49. Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, and Felipo V. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 2003;981:193-200.
50. Ghyczy M and Boros M. Electrophilic methyl groups present in the diet ameliorate pathological states induced by reductive and oxidative stress: a hypothesis. Br J Nutr 2001;85:409-14.
51. Yazaki M, Hineno A, Matsushima A, Ozawa K, Kishida D, Tazawa K, Fukushima K, Urata K, Ikegami T, Miyagawa S, and Ikeda S. First two cases of adult-onset type II citrullinemia successfully treated by deceased-donor liver transplantation in Japan. Hepatol Res 2012;42:934-9.
52. Imamura Y, Kobayashi K, Shibatou T, Aburada S, Tahara K, Kubozono O, and Saheki T. Effectiveness of carbohydrate-restricted diet and arginine granules therapy for adult-onset type II citrullinemia: a case report of siblings showing homozygous SLC25A13 mutation with and without the disease. Hepatol Res 2003;26:68-72.
53. Kogure T, Kondo Y, Kakazu E, Ninomiya M, Kimura O, Kobayashi N, and Shimosegawa T. Three cases of adult-onset type II citrullinemia treated with different therapies: Efficacy of sodium pyruvate and low-carbohydrate diet. Hepatol Res 2014;44:707-12.
54. Kawamoto S, Strong RW, Kerlin P, Lynch SV, Steadman C, Kobayashi K, Nakagawa S, Matsunami H, Akatsu T, and Saheki T. Orthotopic liver transplantation for adult-onset type II citrullinaemia. Clin Transplant 1997;11:453-8.
55. Yazaki M, Ikeda S, Takei Y, Yanagisawa N, Matsunami H, Hashikura Y, Kawasaki S, Makuuchi M, Kobayashi K, and Saheki T. Complete neurological recovery of an adult patient with type II citrullinemia after living related partial liver transplantation. Transplantation 1996;62:1679-84.
56. Yazaki M, Kinoshita M, Ogawa S, Fujimi S, Matsushima A, Hineno A, Tazawa K, Fukushima K, Kimura R, Yanagida M, Matsunaga H, Saheki T, and Ikeda S. A 73-year-old patient with adult-onset type II citrullinemia successfully treated by sodium pyruvate and arginine. Clin Neurol Neurosurg 2013;115:1542-5.
57. Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, and Lemasters JJ. L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care 2003;6:229-40.
58. den Eynden JV, Ali SS, Horwood N, Carmans S, Brone B, Hellings N, Steels P, Harvey RJ, and Rigo JM. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2009;2:9.
59. Tao L, Zhu W, Hu BJ, Qu JM, and Luo ZQ. Induction of rapid cell death by an environmental isolate of Legionella pneumophila in mouse macrophages. Infect Immun 2013;81:3077-88.
60. Diaz-Flores M, Cruz M, Duran-Reyes G, Munguia-Miranda C, Loza-Rodriguez H, Pulido-Casas E, Torres-Ramirez N, Gaja-Rodriguez O, Kumate J, Baiza-Gutman L A, and Hernandez-Saavedra D. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Can J Physiol Pharmacol 2013;91:855-60.
61. Ruiz-Ramirez A, Ortiz-Balderas E, Cardozo-Saldana G, Diaz-Diaz E, and El-Hafidi M. Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clin Sci (Lond) 2014;126:19-29.
62. Bavarsad Shahripour R, Harrigan MR, and Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 2014;4:108-22.
63. Dodd S, Dean O, Copolov D L, Malhi G S, and Berk M. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 2008;8:1955-62.
64. Saito C, Zwingmann C, and Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010;51:246-54.
65. Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Wai KY, Loo CK, and Chan MH. High-dose n-acetylcysteine in stable copd: The 1-year, double-blind, randomized, placebo-controlled hiace study. CHEST Journal 2013;144:106-118.
66. Dean O, Giorlando F, and Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 2011;36:78-86.
67. Ahmed OG, Thabet HZ, and Mohamed AA.Inflammation versus oxidative stress in pathophysiology of Alzheimer's disease in rat model.Ibnosina J Med BS2014;6:130-144.
68. Bourraindeloup M, Adamy C, Candiani G, Cailleret M, Bourin MC, Badoual T, Su JB, Adubeiro S, Roudot-Thoraval F, Dubois-Rande JL, Hittinger L, and Pecker F. N-acetylcysteine treatment normalizes serum tumor necrosis factor-alpha level and hinders the progression of cardiac injury in hypertensive rats. Circulation 2004;110:2003-9.
69. Akgun E, Caliskan C, Celik H, Ozutemiz A, Tuncyurek M, and Aydin H. Effects of N-acetylcysteine treatment on oxidative stress in acetic acid-induced experimental colitis in rats. J IntMed Res 2005;33:196-206.
70. Davit-Spraul A, Pourci ML, Soni T, and Lemonnier A. Metabolic effects of galactose on human HepG2 hepatoblastoma cells. Metabolism 1994;43:945-52.
71. Petty RD, Sutherland LA, Hunter EM, and Cree IA. Comparison of MTT and ATP-based assays for the measurement of viable cell number. J Biolumin Chemilumin 1995;10:29-34.
72. Dott W, Mistry P, Wright J, Cain K, and Herbert KE. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol 2014;2:224-33.
73. Bustamante E and Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 1977;74:3735-9.
74. Kase ET, Nikolic N, Bakke SS, Bogen KK, Aas V, Thoresen GH, and Rustan AC. Remodeling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells. PLoS One 2013;8:e59972.
75. Robinson BH, Petrova-Benedict R, Buncic JR, and Wallace DC. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem Med Metab Biol 1992;48:122-6.
76. Heidenreich RA, Mallee J, Rogers S, and Segal S. Developmental and tissue-specific modulation of rat galactose-1-phosphate uridyltransferase steady state messenger RNA and specific activity levels. Pediatr Res 1993;34:416-9.
77. Wagner A, Marc A, Engasser JM, and Einsele A. Growth and metabolism of human tumor kidney cells on galactose and glucose. Cytotechnology 1991;7:7-13.
78. Reitzer LJ, Wice BM, and Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 1979;254:2669-76.
79. Wilkens CA, Altamirano C, and Gerdtzen ZP. Comparative metabolic analysis of lactate for CHO cells in glucose and galactose.Biotechnol Bioproc E 2011;16:714-724.
80. Buttke TM, McCubrey JA, and Owen TC. Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 1993;157:233-40.
81. Berridge MV, Herst PM, and Tan AS. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction.Biotechnol Annu Rev 2005;11:127-152.
82. Zeng FY, Cui J, Liu L, and Chen T. PAX3-FKHR sensitizes human alveolar rhabdomyosarcoma cells to camptothecin-mediated growth inhibition and apoptosis. Cancer Lett 2009;284:157-64.
83. Fotakis G and Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 2006;160:171-7.
84. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, and Yuan J. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311-23.
85. Arora S, Gonzales IM, Hagelstrom RT, Beaudry C, Choudhary A, Sima C, Tibes R, Mousses S, and Azorsa DO. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma. Mol Cancer 2010;9:218.
86. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009;16:1093-107.
87. Du J, Cleghorn W, Contreras L, Linton JD, Chan GC, Chertov AO, Saheki T, Govindaraju V, Sadilek M, Satrustegui J, and Hurley JB. Cytosolic reducing power preserves glutamate in retina. Proc Natl Acad Sci USA 2013;110:18501-6.
校內:2024-12-31公開