簡易檢索 / 詳目顯示

研究生: 林季緯
Lin, Chi-wei
論文名稱: 波羅的海運價指數與金磚四國股價指數因果關係分析
Causality Analysis between Baltic Dry Index and Stock Markets in BRICs
指導教授: 張瀞之
Chang, Ching-chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 38
中文關鍵詞: Granger因果關係金磚四國散裝航運波羅的海運價指數
外文關鍵詞: Dry-Bulk shipping industry, BRICs, BDI, Granger causality
相關次數: 點閱:101下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於已開發國家近年來經濟成長速度的緩慢,開發中國家的快速崛起,造成全球的經濟版圖史無前例的改變,其中又以金磚四國的發展最為耀眼。巴西和俄羅斯為現今全世界主要的原物料供應者;印度以及中國則挾帶著其龐大的生產力為當今全球製成品和服務的主要出口國,這個現象促使全球物流配送對於散裝海運的需求大幅提升,以滿足更多製成品以及原物料對於運輸的需求。
    然而,美國仍為當前世界經濟強權,縱使美國為金融風暴所苦,但它對於世界經濟及股票市場依然有很大的影響力。因此,本研究探討2003年1月至2008年6月底波羅的海運價指數與金磚四國及美國股票市場間之因果關係分析。本研究分別採用單根檢定、共整合檢定、向量誤差修正模型、向量自我迴歸模型及Granger因果關係檢定進行實證分析。
    實證結果顯示,所有原始的時間序列資料皆呈現非定態;但是在經過一階差分之後,資料趨於定態;透過Johansen共整合檢定發現波羅的海運價指數與各國股票市場之間並未存在著長期均衡的關係;此外,Granger因果關係之研究結果顯示中國股價指數的波動才是最主要影響波羅的海運價指數波動之原因。

    The strong emergence of certain developing countries, especially Brazil, Russia, India, and China (BRICs), caused an unprecedented structural change which overshadowed the slower growth of the developed countries at the beginning of 21st century. Brazil and Russia are dominant as suppliers of raw materials; respectively, China and India are the world's dominant suppliers of manufactured goods and services. Thus transportation sector must grow accordingly in order to accommodate the transport of additional goods and raw materials. This phenomenon has boomed the bulk shipping industry.
    However, the United States still dominate world stock markets whether it was suffered by the financial crises or not. Hence, this study explores the dynamic causality linkages between Baltic Dry Index and stock markets by applying the daily data from Baltic Dry Index and the stock indices from BRICs and the United States for the period from January 2nd 2003 to June 30th 2008. This study adopts time series methodology included Unit root test, Co-integration test, Vector error correction model (VECM), Vector auto-regression model (VAR), and Granger Causality test to conduct the data.
    The empirical results show that all the time series data are non-stationary in levels and stationary in first differences. In addition, the finding demonstrates there exit no co-integration among Baltic Dry Index and the stock markets of the United States and BRICs. However, evidence of Granger causality indicates the fluctuation of the stock markets of China is the main factor to impact the Baltic Dry Index.

    Chapter One Introduction 1 1.1 Research Background and Motivation 1 1.2 Researching Purpose 3 1.3 Research Procedure 3 Chapter Two Literature review 5 Chapter Three Methodology 12 3.1 Data collection 12 3.2 Unit Roots Test 13 3.2.1 Augmented Dickey-Fuller test 14 3.2.2 Phillips-Perron test 15 3.2.3 Kwiatkowski-Phillips-Schmidt-Shin test 16 3.3 Co-integration 18 3.4 Vector Error Correction Model 19 3.5 Vector auto-regression 20 3.6 Granger Causality 21 3.7 Summary 22 Chapter Four Empirical Analysis 24 4.1 Data Description and Statistics Analysis 24 4.1 Unit Root Test 25 4.1 Co-integration Test 27 4.1 Vector Auto-regression Model 27 4.1 Granger Causality 30 4.1 Summary and Discussion 31 Chapter Five Conclusions and Discussions 33 Reference 36

    Atukeren, E. (2005). Measuring the strength of cointegration and Granger-causality. Applied Economics, 37(14), 1607 - 1614.
    Bahng, S. (2003). The response of the Indian stock market to the movement of Asia's emerging markets: From isolation toward integration? Global Economic Review, 32, 43-58.
    Bahng, S., & Shin, S.-M. (2004). Interactions of stock markets within the greater China economic bloc. Global Economic Review, 33, 43-60.
    Batchelor, R., Alizadeh, A., & Visvikis, I. (2007). Forecasting spot and forward prices in the international freight market. International Journal of Forecasting, 23, 101-114.
    Bhoocha-oom, A., & Stansell, S. R. (1990). A study of international financial market integration: An examination of the U.S., Hong Kong and Singapore markets. Journal of Business Finance & Accounting, 17(2), 193-211.
    Chancharat, S., & Valadkhani, A. (2007). An empirical analysis of the Thai and major international stock markets. School of Economics, 7-13.
    Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of American Statistics Association, 74, 427-431.
    Enders, W. (2004). Applied econometric time series. New York: John Willey & Sons, Inc.
    Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation and testing. Econometrica, 55(2), 251-276.
    Gjerde, Q., & Settem, F. (1995). Linkages among European and world stock markets. The European Journal of Finance, 1, 165-179.
    Granger, C. W. J. (1969). Investigating causal relation by econnometric model and cross-spectral method. Econometric, 36, 424-438.
    Hammoudeh, S., Dibooglu, S., & Aleisa, E. (2004). Relationships among U.S. oil prices and oil industry equity indices. International Review of Economics and Finance, 13, 427–453.
    Huang, B.-N., Yang, C.-W., & Hu, J. W.-S. (2000). Causality and cointegration of stock markets among the United States, Japan, and the South China Growth Triangle. International Review of Financial Analysis, 9(3), 281-297.
    International Monetary Fund. from http://www.imf.org/external/index.htm
    Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration-With application to the demand for money. Oxford Bullentin of Economics and Statistics, 52, 169-210.
    Kargbo, J. M. (2007). The effects of macroeconomic factors on South African agriculture. Applied Economics, 39(17), 2211 - 2230.
    Kavussanos, M. G., & Visvikis, I. D. (2004). Market interactions in returns and volatilities between spot and forward shipping freight markets. Journal of Banking & Finance, 28, 2015-2049.
    Kwiatkowski, D., Phillips, P. C. B., and, P. S., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic series have a unit root? Journal of Econometrics 54, 159–178.
    Lima, L. R., & Filho, J. D. (2008). Further investigation of the uncertain trend in US GDP. Applied Economics, 40(9), 1207 - 1216.
    Maddala, G. S., & Kim, I.-M. (1998). Unit roots, cointegration and structural change: Cambridge University Press.
    Narayan, P. K., & Prasad, B. C. (2008). Are shocks to real effective exchange rates permanent or transitory? Evidence from Pacific island countries. Applied Economics, 40(8), 1053 - 1060.
    Organization for Economic Cooperation and Development (OECD)
    Patterson, K. D. (2000). An introduction to applied econometrics: A time series approach New York: Palgrave.
    Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika 75(2), 335-346.
    Schwenninger, S. R. (2008). How to save the world. World Policy Journal, 25(4), 3-13.
    Sim, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1-48.
    Syriopoulos, T. (2007). Dynamic linkages between emerging European and developed stock markets: Has the EMU any impact? International Review of Financial Analysis, 16(1), 41- 60.
    Taylor, J. W. (2004). Volatility forecasting with smooth transition exponential smoothing. International Journal of Forecasting, 20, 273-286.
    World Trade Organization http://www.wto.org/
    Yang, Y. N. (2005). Time series analysis in econometrics and finance. Taipei: Yeh-Yeh Book Gallery Co.,Ltd.

    下載圖示 校內:2011-07-14公開
    校外:2014-07-14公開
    QR CODE