簡易檢索 / 詳目顯示

研究生: 蘇誌航
Su, Chih-Hang
論文名稱: 透過跨網域NetFlow分析增強P2P殭屍網路偵測
Enhancing P2P Botnet Detection through Cross-Domain NetFlow Analysis
指導教授: 謝錫堃
Shieh, Ce-Kuen
共同指導教授: 張志標
Chang, Jyh-Biau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 23
中文關鍵詞: 點對點殭屍網路單一網域跨網域網路流
外文關鍵詞: P2P Botnet, Single-Domain, Cross-Domain, NetFlow
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 點對點殭屍網路對網際網路照成了許多問題,例如分散式阻斷服務(DDoS)攻擊、垃圾郵件、個人資料竊取等等。如果我們能找到一個方法來有效率的抓出殭屍網路,便能更快的將它們癱瘓,讓網際網路的使用更加安全。
    在本實驗室的前項研究裡,基於相似度點對點殭屍網路偵測演算法利用點對點殭屍網路的高相似行為之特性,從真實網路流中歸納出殭屍網路的行蹤。前述演算法可用來找出單一網域中的殭屍網路。不過在跨網域的環境裡,可能存在須以跨網域視野才得以發掘的殭屍網路。
    在本篇論文中,我們提出一個能利用跨網域視野的方法來加強原本的點對點殭屍網路偵測演算法,找出藏身在多個網域中的殭屍網路。

    Peer-to-peer(P2P) Botnets cite{web:botnet} have caused many problems in the Internet such as Distributed Denial-of-Service attack(DDoS), mail spam, identity theft, etc. If we can find a way to find out these botnets very efficiently, then we'll be able to shut down them more quickly, and make the Internet safer to use.
    In our previous research, the Similarity-based P2P Botnet Detection Algorithm utilizes the high similar behaviors of P2P Botnet, and inducts botnets from real traffic NetFlow. This algorithm is used to find Botnet in single-domain, but it may be possible that a Botnet appears in more than one domain. In the case of the cross-domain, there should be some Botnets that are only detectible with cross-domain's view.
    In this paper, we propose a method to enhance our previous P2P Botnet Detection, which utilizes the bigger sight of cross-domain to find the botnets hide in multiple domains.

    Chapter 1:Introduction 1 1.1 Importance of Problems, Challenge 2 1.1.1 Storage concern & Computing efficiency 2 1.1.2 Privacy issue 2 1.2 Existed Solutions 3 1.2.1 Supervised Learning 3 1.2.2 Unsupervised Learning 3 1.3 Our Solution 3 Chapter 2:Backgrounds & Related Works 5 2.1  Bot Cluster 5 2.1.1 Session 5 2.1.2 3-Level-Grouping 6 2.2  A Similarity-based P2P Botnet Detection Algorithm for Inter-Domain Net- FlowAnalysis 8 2.3  Streaming P2P Botnet Quick Detection System 9 2.4  Study on Deep Neural Network Approach to P2P botnet detection 10 Chapter 3:Methodology 11 3.1 Overview 11 3.2 Feature Selection & Similarity Comparison 12 3.3 Phase 1: Single-Domain Analysis 13 3.4 Phase 2: Cross-Domain Analysis 13 3.4.1 IP De-Identification 14 3.4.2 Merge 15 3.4.3 Similarity Grouping 15 Chapter 4:Implementation 16 4.1 Feature Vector Normalization 16 4.2 VirusTotal Verification 16 4.2.1 1st VirusTotal Check 16 4.2.2 2nd VirusTotal Check 17 Chapter 5:Evaluation 18 5.1 Environment 18 5.2 Real Traffic NetFlow Dataset 18 5.3 Experiment Results 18 5.3.1 Experiment 1 18 5.3.2 Experiment 2 20 5.4 Experiment Thought 21 Chapter 6:Conclusion 22 References 23

    [1] Bots and botnets – the most dangerous threat on the internet - bull- guard. https://www.bullguard.com/zh-tw/bullguard-security-center/ internet-security/internet-threats/bots-and-botnets.
    [2] Dns clients and timeouts. blogs.technet.com/b/stdqry/archive/2011/12/15/ dns-clients-and-timeouts-part-2.aspx.
    [3] Euclidean distance. https://en.wikipedia.org/wiki/Euclidean_distance.
    [4] Tcpinitialrtt. https://technet.microsoft.com/en-us/library/cc938207.aspx.
    [5] Tcpmaxconnectretransmissions. https://technet.microsoft.com/en-us/library/cc938209.aspx.
    [6] Virustotal.https://www.virustotal.com.
    [7] Pin-Hao Chen. Study on deep neural network approach to p2p botnet detection. Institute of Computer and Communication Engineering Master’s Thesis, National Cheng Kung University, Tainan, Taiwan, 2018.
    [8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun. ACM, 51(1):107–113, January 2008.
    [9] Sheng-Min Hsu. A similarity-based p2p botnet detection algorithm for inter-domain netflow analysis. Institute of Computer and Communication Engineering Master’s The- sis, National Cheng Kung University, Tainan, Taiwan, 2016.
    [10] Mu-LinHuang. A streaming p2p botnet quick detection system based on group features of botcluster. Institute of Computer and Communication Engineering Master’s Thesis, National Cheng Kung University, Tainan, Taiwan, 2018.
    [11] Chun Yu Wang, Chi Lung Ou, Yu En Zhang, Feng Min Cho, Pin Hao Chen, Jyh Biau Chang, and Ce-Kuen Shieh. Botcluster: A session-based p2p botnet clustering system on netflow. Computer Networks, 145:175–189, 11 2018.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE