簡易檢索 / 詳目顯示

研究生: 莊其毅
Chuang, Chi-Yi
論文名稱: 雷射表面改質製程之Ti-6Al-4V合金熱場與相變態數值模擬研究
Numerical Modeling of Thermal Field and Phase Transformations of Ti-6Al-4V during Laser Surface Modification Process
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 鈦六鋁四釩相組織雷射製程數值模擬
外文關鍵詞: Ti-6Al-4V, phase transformation, laser surface melting, modeling
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射製程與傳統的熱處理及加工製程不同,因雷射高能量密度以及局部小範圍加熱的特性,再加上多元的雷射製程參數,使被處理工件產生複雜的熱歷程。不同的熱歷程會經歷不同的相變態過程,而得到不一樣的相組織,相組織將決定材料的機械性質。本研究可分為兩個部分。首先,以有限元素方法為基礎,針對雷射表面改質製程,分析雷射掃描Ti-6Al-4V合金工件的溫度場。第二,以相圖以及半經驗公式為基礎,建立一套數學方法,根據熱場分析所提供的溫度函數進行相組織的計算。
    溫度場的結果提供了熔池的幾何,並可用來預測熱影響區的範圍及尺寸。相組織的模擬則提供了製程中,Ti-6Al-4V合金各相體積分率的變化歷程,以及最終的相組成。發現熱影響區中各元素的麻田散體相體積分率皆為80 %左右,且β相相體積分率從製程前的30 %降為18.9 %。根據相組成進一步計算微硬度值後,發現計算值與實驗結果吻合,證實了相組織模擬的準確性與可靠性,未來可以此模型為基礎,應用於選擇性雷射熔融製程的相組織計算。

    Laser surface modification is a technique that treats the materials locally to change the material properties. Complex thermal histories are induced at different sites during the laser surface modification process because of the various laser parameters and scanning paths. Diverse thermal histories would lead to different phase transformations that finally decide the microstructure and material properties.
    In this study, a finite element model and a mathematical model were built and validated to provide reliable temperatures as a function of time and location and simulate the phase transformations respectively. The hardness was evaluated by the rules of mixture on the basis of the simulated phase compositions and validated by experimental results. Eventually, the simulations were conducted at different laser scanning speeds. The faster laser scanning speed leads to a smaller heat-affected zone but a larger hardness value of the heat-affected zone.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 前言 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 雷射輔助製程 2 1.2.2 雷射表面改質製程與數值模擬 4 1.2.3 鈦合金分類 5 1.2.4 Ti-6Al-4V合金 9 1.2.5 鈦合金的組織與機械性質 9 1.2.6 相變態數值模擬 11 1.2.7 Ti-6Al-4V合金相變態 12 1.3 研究目的 13 第二章 數值方法與理論基礎 16 2.1 雷射熱源 16 2.2 熱傳模擬分析 17 2.3 相變態計算 19 2.3.1 擴散相變 20 2.3.2 無擴散相變 21 2.3.3 Ti-6Al-4V合金相變計算流程 22 2.4 硬度值計算 26 第三章 研究方法與步驟 30 3.1 模擬流程 30 3.2 熱場模擬系統 30 3.2.1 模型建立 30 3.2.2 模擬假設 32 3.2.3 模型驗證 32 3.3 相變態模擬系統 33 3.3.1 模型建立 33 3.3.2 模擬假設 34 第四章 結果與討論 40 4.1 三維溫度場模擬結果與驗證 40 4.2 雷射表面改質製程下Ti-6Al-4V合金的相組織模擬 42 4.2.1 相組織體積分率的變化歷程 42 4.2.2 製程結束後相組織的分佈情形 44 4.3 雷射表面改質製程對Ti-6Al-4V合金相組織及硬度的影響 45 4.4 不同雷射掃描速度對熱影響區尺寸及相組織的影響 46 第五章 結論 65 參考文獻 66

    [1] J. Yang, S. Sun, M. Brandt, and W. Yan, “Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy”, Journal of Materials Processing Technology, vol. 210(15), pp. 2215-2222, 2010.
    [2] M. Akbari, S. Saedodin, D. Toghraie, R. Shoja-Razavi, and F. Kowsari, “Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy”, Optics & Laser Technology, vol. 59, pp. 52-59, 2014.
    [3] T.L. Perry, D. Werschmoeller, X. Li, F.E. Pfefferkorn, and N.A. Duffie, “Pulsed laser polishing of micro-milled Ti6Al4V samples”, Journal of Manufacturing Processes, vol. 11(2), pp. 74-81, 2009.
    [4] A. Yánez, J.C. Álvarez, A.J. López, G. Nicolás, J.A. Pérez, A. Ramil, and E. Saavedra, “Modelling of temperature evolution on metals during laser hardening process”, Applied Surface Science, vol. 186(1–4), pp. 611-616, 2002.
    [5] J.S. Selvan, K. Subramanian, and A.K. Nath, “Effect of laser surface hardening on En18 (AISI 5135) steel”, Journal of Materials Processing Technology, vol. 91(1–3), pp. 29-36, 1999.
    [6] Y. Li and D. Gu, “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder”, Materials & Design, vol. 63, pp. 856-867, 2014.
    [7] J. Hu, L. Kong, and G. Liu, “Structure and hardness of surface of Al 18 B 4 O 33 w/Al composite by laser surface melting”, Materials Science and Engineering: A, vol. 486(1), pp. 80-84, 2008.
    [8] S. Yang, Q. Meng, L. Geng, L. Guo, and L. Wu, “Ni–TiC coating deposited on Ti–6Al–4V substrate by thermal spraying and laser remelting of Ni-clad graphite powder”, Materials Letters, vol. 61(11), pp. 2356-2358, 2007.
    [9] C. Li, Y. Wang, H. Zhan, T. Han, B. Han, and W. Zhao, “Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing”, Materials & Design, vol. 31(7), pp. 3366-3373, 2010.
    [10] M. Picasso and A. Hoadley, “Finite element simulation of laser surface treatments including convection in the melt pool”, International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4(1), pp. 61-83, 1994.
    [11] M. Barekat, R.S. Razavi, and A. Ghasemi, “Nd: YAG laser cladding of Co–Cr–Mo alloy on γ-TiAl substrate”, Optics & Laser Technology, vol. 80, pp. 145-152, 2016.
    [12] D. Bedenko, O. Kovalev, I. Smurov, and A. Zaitsev, “Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology”, International Journal of Heat and Mass Transfer, vol. 95, pp. 902-912, 2016.
    [13] D. Hu and R. Kovacevic, “Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing”, Proceedings of The Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217(4), pp. 441-452, 2003.
    [14] A.J. Pinkerton and L. Li, “Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances”, Journal of Physics D: Applied Physics, vol. 37(14), pp. 1885, 2004.
    [15] K. Antony, N. Arivazhagan, and K. Senthilkumaran, “Numerical and experimental investigations on laser melting of stainless steel 316L metal powders”, Journal of Manufacturing Processes, vol. 16(3), pp. 345-355, 2014.
    [16] A. Hussein, L. Hao, C. Yan, and R. Everson, “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting”, Materials & Design, vol. 52, pp. 638-647, 2013.
    [17] K. Weman, "Welding processes handbook", pp. 32, Elsevier, 2011.
    [18] M. Frewin and D. Scott, “Finite element model of pulsed laser welding”, Welding Journal-New York-, vol. 78, pp. 15-20, 1999.
    [19] A. Fortunato, A. Ascari, L. Orazi, G. Cuccolini, G. Campana, and G. Tani, “Numerical simulation of nanosecond pulsed laser welding of eutectoid steel components”, Optics & Laser Technology, vol. 44(7), pp. 1999-2003, 2012.
    [20] A. Zervaki, G. Haidemenopoulos, and S. Lambrakos, “Inverse thermal analysis of heat-affected zone in Al2129 and Al2198 laser welds”, Journal of Materials Engineering and Performance, vol. 22(6), pp. 1582-1592, 2013.
    [21] R. Singh, M.J. Alberts, and S.N. Melkote, “Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process”, International Journal of Machine Tools and Manufacture, vol. 48(9), pp. 994-1004, 2008.
    [22] S. Malinov, P. Markovsky, W. Sha, and Z. Guo, “Resistivity study and computer modelling of the isothermal transformation kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0.08 Si alloys”, Journal of Alloys and Compounds, vol. 314(1), pp. 181-192, 2001.
    [23] M.J. Donachie, "Titanium: a technical guide", pp. 36-41, ASM international, 2000.
    [24] M. Peters and C. Leyens, "Titanium and titanium alloys: Fundamentals and applications", pp. 51-72, Wiley, 2003.
    [25] Y. Fan, P. Cheng, Y. Yao, Z. Yang, and K. Egland, “Effect of phase transformations on laser forming of Ti–6Al–4V alloy”, Journal of Applied Physics, vol. 98(1), pp. 013518, 2005.
    [26] C. Charles and N. Järvstråt, “Finite Element Modelling of Microstructure on GTAW Metal Deposition of Ti-6Al-4V alloy”, Proceedings of the 3rd International Conference in Mathematical Modelling and Information Technologies in Welding and Related Process, 2006.
    [27] C. Charles and N. Järvstråt, “Development of a microstructure model for metal deposition of titanium alloy Ti-6Al-4V”, Proceedings of the 11th World Conference on Taitanium(Ti-2007), 2007.
    [28] C. Charles and N. Järvstråt, “Modelling Ti–6Al–4V microstructure by evolution laws implemented as finite element subroutines: application to TIG metal deposition”, Proceedings of the 8th International Conference on Trends in Welding Research, 2009.
    [29] A. Suárez, M. Tobar, A. Yáñez, I. Pérez, J. Sampedro, V. Amigó, and J. Candel, “Modeling of phase transformations of Ti6Al4V during laser metal deposition”, Physics Procedia, vol. 12, pp. 666-673, 2011.
    [30] A. Crespo, A. Deus, and R. Vilar, “Modeling of phase transformations and internal stresses in laser powder deposition”, XVII International Symposium on Gas Flow and Chemical Lasers and High Power Lasers: International Society for Optics and Photonics, 2008.
    [31] A. Crespo, "Modelling of heat transfer and phase transformations in the rapid manufacturing of titanium components", pp. 49-55, Intech Open Access Publisher, 2011.
    [32] T. Ahmed and H.J. Rack, “Phase transformations during cooling in α+ β titanium alloys”, Materials Science and Engineering: A, vol. 243(1), pp. 206-211, 1998.
    [33] M. Avrami, “Kinetics of phase change. I General theory”, The Journal of Chemical Physics, vol. 7(12), pp. 1103-1112, 1939.
    [34] J. Elmer, T. Palmer, S. Babu, W. Zhang, and T. DebRoy, “Phase transformation dynamics during welding of Ti–6Al–4V”, Journal of Applied Physics, vol. 95(12), pp. 8327-8339, 2004.
    [35] R. Trivedi, “Growth of dendritic needles from a supercooled melt”, Acta Metallurgica, vol. 18(3), pp. 287-296, 1970.
    [36] E. Andersson and A. Johansson, "The effect of driving force in Gibbs energy on the fraction of martensite", pp. 4-6, in Dept. of Material Science and Engineering, Royal Institute of Technology: Sweden, 2013.
    [37] R. Wanhill and S. Barter, "Fatigue of beta processed and beta heat-treated titanium alloys", pp. 12-19, Springer Science & Business Media, 2011.
    [38] A. Biswas, L. Li, T. Maity, U. Chatterjee, B. Mordike, I. Manna, and J.D. Majumdar, “Laser surface treatment of Ti-6Al-4V for bio-implant application”, Lasers in Engineering, vol. 17(1-2), pp. 59-73, 2007.

    下載圖示 校內:2019-07-25公開
    校外:2021-07-25公開
    QR CODE