| 研究生: |
許修瑞 Hsu, Xiu-Rui |
|---|---|
| 論文名稱: |
探討胞外泌體中的長鏈非編碼RNA對於非小細胞肺癌爬行和侵襲的影響 Exosomal lncRNA promotes cell migration and invasion in non-small cell lung cancer |
| 指導教授: |
洪澤民
Hong, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 肺癌 、胞外泌體 、細胞爬行 、細胞侵襲 、長鏈非編碼RNA |
| 外文關鍵詞: | lung cancer, exosome, cell migration, cell invasion, lncRNA |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是全世界最常見以及死亡率最高的癌症,此外大約有90%的病患死於肺癌的轉移。癌症的轉移是一個非常複雜的過程,其中有許多細胞內的因子以及細胞外腫瘤微環境的因素可能會影響到肺癌細胞的轉移。然而,影響肺癌細胞轉移的分子機制目前還不是很清楚。因此,了解肺癌細胞轉移的分子機制以及發現早期的生物標誌對於肺癌的診斷和治療是非常需要的。最近,有許多研究報告指出胞外泌體在細胞之間的訊息溝通中扮演重要角色。特別是癌細胞會藉由胞外泌體將癌症轉移相關的分子傳遞給其他的癌細胞,使得癌細胞更具爬行與侵襲的能力並且促使腫瘤轉移的發生。因此,在本篇研究中,我們想探討是否高轉移性的癌細胞所分泌的胞外泌體會促進肺癌細胞爬行與侵襲的能力。在我們的實驗中,首先我們證明了CL1-5細胞的培養液能夠促進CL1-0細胞的爬行與侵襲,此外我們也發現CL1-5細胞的胞外泌體可以增加CL1-0細胞爬行與侵襲的能力。次世代定序的結果發現一個新穎的長鏈非編碼RNA U16在CL1-5細胞與胞外泌體中大量表現,而在CL1-0細胞與胞外泌體中表現量是相對較少的。功能分析的結果發現過表現長鏈非編碼RNA U16會促進CL1-0細胞的爬行與侵襲。相反地,降低長鏈非編碼RNA U16的表現量會抑制CL1-5細胞的爬行與侵襲。此外分子機制的分析中發現過表現長鏈非編碼RNA U16最顯著地活化CL1-0細胞中Notch的訊息傳遞路徑,並且調控HES5和HEY2的表現量。有趣的是,爬行與侵襲的實驗發現過表達長鏈非編碼RNA U16的胞外泌體具有促進細胞爬行與侵襲的能力,能夠促進CL1-0細胞的爬行與侵襲。相反地,降低長鏈非編碼RNA U16的表現量可以抑制CL1-5的胞外泌體所引起的細胞爬行與侵襲。結論是我們的研究證明了CL1-5細胞可以藉由胞外泌體將長鏈非編碼RNA U16傳送給CL1-0細胞並且促進CL1-0細胞的爬行與侵襲。
Lung cancer is the most common and deadly cancer throughout the world. Furthermore, approximately 90% of all lung cancer deaths are caused by tumor metastasis. Metastasis is an intricate process that a lot of cell intrinsic and extrinsic tumor microenvironment factors affect the metastasis of lung cancer cells. However, the underlying mechanisms that promote the lung cancer metastasis remain largely unclear. Thus, it is urgent to understand the molecular mechanisms of lung cancer metastasis and discover early biomarker for lung cancer diagnostics and treatment. Recently, some studies have indicated that exosomes play an important role in intercellular communications, especially, tumor-derived exosomes could potentially promote tumor metastasis through delivery of migration-related molecules. Taken together, we want to investigate whether exosomes derived from high metastatic cell promote cell migration and invasion in lung cancer. In this study, we first demonstrated that conditioned media of CL1-5 cells exosome-dependently promoted migration and invasion of CL1-0 cells. Moreover, we revealed that exosomes derived from CL1-5 cells facilitated migration and invasion of CL1-0 cells. The RNA-sequencing identified that a novel lncRNA U16 is upregulated in CL1-5 cells and exosomes compared with CL1-0 cells and exosomes. Functional assay indicated that overexpression of lncRNA U16 promoted migration and invasion of CL1-0 cells. Conversely, knockdown of lncRNA U16 suppressed migration and invasion of CL1-5 cells. Further mechanism study revealed that lncRNA U16 mainly activated Notch signaling, and regulated HES5 and HEY2 expression. Interestingly, migration and invasion assay showed that lncRNA U16-overexpressed exosomes have higher promoting ability in cell migration and invasion of CL1-0 cells. Reciprocally, knockdown of lncRNA U16 decreased CL1-5 derived exosomes-induced cell migration and invasion of CL1-0 cells. In conclusion, our findings indicated that exosomes derived from CL1-5 cells promoted cell migration and invasion of CL1-0 cells through delivery of lncRNA U16.
1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA: a cancer journal for clinicians 68, 7-30, doi:10.3322/caac.21442 (2018).
2 Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446-454, doi:10.1038/nature25183 (2018).
3 Ali, A., Goffin, J. R., Arnold, A. & Ellis, P. M. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Current oncology (Toronto, Ont.) 20, e300-306, doi:10.3747/co.20.1481 (2013).
4 Wang, X. & Adjei, A. A. Lung cancer and metastasis: new opportunities and challenges. Cancer metastasis reviews 34, 169-171, doi:10.1007/s10555-015-9562-4 (2015).
5 Riihimaki, M. et al. Metastatic sites and survival in lung cancer. Lung cancer (Amsterdam, Netherlands) 86, 78-84, doi:10.1016/j.lungcan.2014.07.020 (2014).
6 Bravo-Cordero, J. J., Hodgson, L. & Condeelis, J. Directed cell invasion and migration during metastasis. Current opinion in cell biology 24, 277-283, doi:10.1016/j.ceb.2011.12.004 (2012).
7 Hu, Y. Y., Zheng, M. H., Zhang, R., Liang, Y. M. & Han, H. Notch signaling pathway and cancer metastasis. Advances in experimental medicine and biology 727, 186-198, doi:10.1007/978-1-4614-0899-4_14 (2012).
8 Janse van Rensburg, H. J. & Yang, X. The roles of the Hippo pathway in cancer metastasis. Cellular signalling 28, 1761-1772, doi:10.1016/j.cellsig.2016.08.004 (2016).
9 Lin, C. W. et al. Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1alpha/HDAC1/Slug axis. Nature communications 7, 13867, doi:10.1038/ncomms13867 (2016).
10 Schulte, J. et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochemistry and cell biology 138, 847-860, doi:10.1007/s00418-012-0998-0 (2012).
11 Wang, S. P. et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature cell biology 11, 694-704, doi:10.1038/ncb1875 (2009).
12 Yuan, J. H. et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer cell 25, 666-681, doi:10.1016/j.ccr.2014.03.010 (2014).
13 Lin, C. W. et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nature communications 4, 1877, doi:10.1038/ncomms2876 (2013).
14 Chang, Y. H. et al. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Molecular & cellular proteomics : MCP 11, 1320-1339, doi:10.1074/mcp.M112.017384 (2012).
15 Wu, H. et al. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. Journal of cellular and molecular medicine 21, 1228-1236, doi:10.1111/jcmm.13056 (2017).
16 Zhang, H. et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nature communications 8, 15016, doi:10.1038/ncomms15016 (2017).
17 Chahar, H. S., Bao, X. & Casola, A. Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses. Viruses 7, 3204-3225, doi:10.3390/v7062770 (2015).
18 Azmi, A. S., Bao, B. & Sarkar, F. H. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer metastasis reviews 32, 623-642, doi:10.1007/s10555-013-9441-9 (2013).
19 Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology 30, 255-289, doi:10.1146/annurev-cellbio-101512-122326 (2014).
20 Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature cell biology 10, 1470-1476, doi:10.1038/ncb1800 (2008).
21 Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology 9, 654-659, doi:10.1038/ncb1596 (2007).
22 Lotvall, J. & Valadi, H. Cell to cell signalling via exosomes through esRNA. Cell adhesion & migration 1, 156-158 (2007).
23 Isola, A. L. & Chen, S. Exosomes: The Messengers of Health and Disease. Current neuropharmacology 15, 157-165 (2017).
24 Robbins, P. D. & Morelli, A. E. Regulation of Immune Responses by Extracellular Vesicles. Nature reviews. Immunology 14, 195-208, doi:10.1038/nri3622 (2014).
25 Imjeti, N. S. et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.1713433114 (2017).
26 Xu, B. et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell research 27, 882-897, doi:10.1038/cr.2017.62 (2017).
27 Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450-455, doi:10.1038/nature21365 (2017).
28 Ichim, T. E. et al. Exosomes as a tumor immune escape mechanism: possible therapeutic implications. Journal of Translational Medicine 6, 37, doi:10.1186/1479-5876-6-37 (2008).
29 Xiao, T. et al. The role of exosomes in the pathogenesis of Alzheimer' disease. Translational neurodegeneration 6, 3, doi:10.1186/s40035-017-0072-x (2017).
30 Yang, V. K. Circulating exosome microRNA associated with heart failure secondary to myxomatous mitral valve disease in a naturally occurring canine model. 6, doi:10.1080/20013078.2017.1350088 (2017).
31 Sato, K., Meng, F., Glaser, S. & Alpini, G. Exosomes in liver pathology. Journal of hepatology 65, 213-221, doi:10.1016/j.jhep.2016.03.004 (2016).
32 Au Yeung, C. L. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nature communications 7, 11150, doi:10.1038/ncomms11150 (2016).
33 Whiteside, T. L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochemical Society transactions 41, 245-251, doi:10.1042/bst20120265 (2013).
34 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
35 Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging Biological Principles of Metastasis. Cell 168, 670-691, doi:10.1016/j.cell.2016.11.037 (2017).
36 Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine 12, 895-904, doi:10.1038/nm1469 (2006).
37 Weidle, H. U., Birzele, F., Kollmorgen, G. & RÜGer, R. The Multiple Roles of Exosomes in Metastasis. Cancer Genomics & Proteomics 14, 1-16 (2017).
38 Liao, J., Liu, R., Shi, Y. J., Yin, L. H. & Pu, Y. P. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. International journal of oncology 48, 2567-2579, doi:10.3892/ijo.2016.3453 (2016).
39 Syn, N., Wang, L., Sethi, G., Thiery, J. P. & Goh, B. C. Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance. Trends in pharmacological sciences 37, 606-617, doi:10.1016/j.tips.2016.04.006 (2016).
40 You, Y. et al. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer science 106, 1669-1677, doi:10.1111/cas.12818 (2015).
41 Wang, Y. et al. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-beta and IL-10. Oncology letters 11, 1527-1530, doi:10.3892/ol.2015.4044 (2016).
42 Choi, D. Y. et al. Extracellular vesicles shed from gefitinib-resistant nonsmall cell lung cancer regulate the tumor microenvironment. Proteomics 14, 1845-1856, doi:10.1002/pmic.201400008 (2014).
43 Aga, M. et al. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33, 4613-4622, doi:10.1038/onc.2014.66 (2014).
44 Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature cell biology 17, 816-826, doi:10.1038/ncb3169 (2015).
45 Rana, S., Malinowska, K. & Zoller, M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia (New York, N.Y.) 15, 281-295 (2013).
46 Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329-335, doi:10.1038/nature15756 (2015).
47 Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 109, E2110-2116, doi:10.1073/pnas.1209414109 (2012).
48 Ye, S. B. et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5, 5439-5452, doi:10.18632/oncotarget.2118 (2014).
49 Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. Journal of immunology (Baltimore, Md. : 1950) 187, 676-683, doi:10.4049/jimmunol.1003884 (2011).
50 Whiteside, T. L. Exosomes and tumor-mediated immune suppression. The Journal of clinical investigation 126, 1216-1223, doi:10.1172/jci81136 (2016).
51 Cao, J. The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online 16, 11, doi:10.1186/1480-9222-16-11 (2014).
52 Hung, C. L. et al. A long noncoding RNA connects c-Myc to tumor metabolism. Proceedings of the National Academy of Sciences of the United States of America 111, 18697-18702, doi:10.1073/pnas.1415669112 (2014).
53 Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature genetics 45, 1392-1398, doi:10.1038/ng.2771 (2013).
54 Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409-419, doi:10.1016/j.cell.2010.06.040 (2010).
55 Xu, Z. et al. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 36, 1965-1977, doi:10.1038/onc.2016.356 (2017).
56 Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071-1076, doi:10.1038/nature08975 (2010).
57 Fang, Y. & Fullwood, M. J. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics, proteomics & bioinformatics 14, 42-54, doi:10.1016/j.gpb.2015.09.006 (2016).
58 Terashima, M., Tange, S., Ishimura, A. & Suzuki, T. MEG3 Long Noncoding RNA Contributes to the Epigenetic Regulation of Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines. The Journal of biological chemistry 292, 82-99, doi:10.1074/jbc.M116.750950 (2017).
59 Li, J., Meng, H., Bai, Y. & Wang, K. Regulation of lncRNA and Its Role in Cancer Metastasis. Oncology research 23, 205-217, doi:10.3727/096504016x14549667334007 (2016).
60 Weidle, U. H., Birzele, F., Kollmorgen, G. & RÜGer, R. Long Non-coding RNAs and their Role in Metastasis. Cancer Genomics & Proteomics 14, 143-160, doi:10.21873/cgp.20027 (2017).
61 Qu, L. et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nature communications 7, 12692, doi:10.1038/ncomms12692 (2016).
62 Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100-104, doi:10.1038/nature15376 (2015).
63 Gangoda, L. et al. Proteomic Profiling of Exosomes Secreted by Breast Cancer Cells with Varying Metastatic Potential. Proteomics 17, doi:10.1002/pmic.201600370 (2017).
64 Popper, H. H. Progression and metastasis of lung cancer. Cancer metastasis reviews 35, 75-91, doi:10.1007/s10555-016-9618-0 (2016).
65 Quail, D. & Joyce, J. Microenvironmental regulation of tumor progression and metastasis. Nature medicine 19, 1423-1437, doi:10.1038/nm.3394 (2013).
66 Alderton, G. K. The tumour microenvironment drives metastasis. Nature Reviews Cancer 16, 199, doi:10.1038/nrc.2016.31 (2016).
67 Reclusa, P. et al. Exosomes genetic cargo in lung cancer: a truly Pandora’s box. Translational Lung Cancer Research 5, 483-491, doi:10.21037/tlcr.2016.10.06 (2016).
68 Schillaci, O. et al. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Scientific Reports 7, 4711, doi:10.1038/s41598-017-05002-y (2017).
69 Li, L. et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer research 76, 1770-1780, doi:10.1158/0008-5472.can-15-1625 (2016).
70 Wang, N. et al. Circulating exosomes contain protein biomarkers of metastatic non‐small‐cell lung cancer. Cancer science 109, 1701-1709, doi:10.1111/cas.13581 (2018).
71 Singh, A. et al. Exosome-mediated Transfer of alphavbeta3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Molecular cancer research : MCR 14, 1136-1146, doi:10.1158/1541-7786.Mcr-16-0058 (2016).
72 Huang, X. et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. European urology 67, 33-41, doi:10.1016/j.eururo.2014.07.035 (2015).
73 Li, J. et al. LncRNA MALAT1 exerts oncogenic functions in lung adenocarcinoma by targeting miR-204. American Journal of Cancer Research 6, 1099-1107 (2016).
74 Liu, Z. et al. Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Molecular cancer 16, 82, doi:10.1186/s12943-017-0651-6 (2017).
校內:2023-12-31公開