簡易檢索 / 詳目顯示

研究生: 李文灶
Lee, Wen-Zao
論文名稱: 雙板驅動之空穴流穩定性與熱傳分析
The Stability and Heat Transfer Analysis in Two Lids Driven Cavity Flow
指導教授: 楊瑞珍
Yang, Rui-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 100
中文關鍵詞: 連續法
外文關鍵詞: cat's eye flow
相關次數: 點閱:42下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 渦量動力學一直是流體力學中一門相當重要且基礎的研究課題。特別是在非線性方程的因素下,會產生多形式的差異解,多重解中包含穩定與不穩定狀態解,更是引起許多學者的廣泛研究探討。而這些問題的研究結果,可運用到許多工程問題的應用上,如薄膜覆蓋沈積的製程上。
    本論文採用長寬比為1.96的二維的矩形體,其以具溫度梯度雙板反向平行等速移動來驅動流體去模擬薄膜覆蓋製程的流場的變化情況。首先採用連續法與線性穩定度分析於流場的探討上,以求得整個系統在特定的長寬比下,無溫度梯度流場隨對板移動速度的改變,並建構出整個系統的分歧圖,隨後加入各流場隨時間的穿遞變化,再次驗證流場穩定度,最後再加入溫度梯度對原流場的影響,對流場的散熱效應加以討論。
    由連續法的計算結果,以Re為控制參數下,在雷諾數2000以下存在五種流場形態及其流場穩定度,其中三種形態為穩定流場,另發現在對稱性流場與非對稱性流場分界的pitch-fork分歧點,而在以Gr為控制參數下的計算結果,建構出流場形態隨溫度梯度強弱的轉變,再區分出穩定流場的存在區域,在穩定流場的熱傳遞效率比較上,cat’s eye flow明顯優於two-vortex flow。

    The dynamics of vorticies is a fundamental topic in fluid mechanics. Due to nonlinear characters in governing equations, multiple flow solutions are found in a two dimensional cavity flow accompanied by heat transport. In particular, the instability problems of these multiple flow solutions always attract many scholar’s investigation. The results of the basic study on the stability analysis may find applications in engineering, e.g. the processes of film coating.
    We use a cavity model of aspect ratio 1.96 in this study. The two lids on the top and the bottom of the cavity with temperature gradient move in opposite direction. A continuation method and linear stability analysis are used to obtain a comprehensive bifurcation diagram on the cavity flow and the flow transition process is used to confirm the flow stability. Finally, the flow with temperature gradient in the cavity is investigated.
    Three symmetric flows and two asymmetric flows are found for different continuation parameter on Re. Three of them are stable flows. A pitch-fork bifurcation point is determined to distinguish between symmetric flow and asymmetric flow. For different continuation parameter on Gr, the heat transfer effect in cat’s eye flow is much stronger than two-vortex flow.

    摘要 ------------------------------------------------------------------Ⅰ 英文摘要 ------------------------------------------------------------Ⅱ 致謝 ------------------------------------------------------------------Ⅲ 目錄 ------------------------------------------------------------------Ⅳ 表目錄 ---------------------------------------------------------------Ⅵ 圖目錄 ---------------------------------------------------------------Ⅶ 符號說明 -----------------------------------------------------------XII 第一章 續論 ---------------------------------------------------------1 §1.1 Cavity flow 應用介紹 --------------------------------------1 §1.2 文獻回顧 -----------------------------------------------------2 §1.3 研究方向 -----------------------------------------------------4 §1.4 本文架構 -----------------------------------------------------5 第二章 統禦方程與邊界條件 ------------------------------------6 §2.1 Cavity flow 的模擬模型 -----------------------------------6 §2.2 整個系統的無因次統禦方程 -----------------------------7 第三章 數值方法 --------------------------------------------------13 §3.1 連續法的概念 ----------------------------------------------13 §3.2 Prediction step -----------------------------------------------15 §3.3 Correction step ----------------------------------------------17 §3.4 Step control --------------------------------------------------18 §3.5 Euler-Newton continuation --------------------------------18 §3.6 定常解於時間上做穿遞 ---------------------------------20 §3.7 線性穩定度分析 ------------------------------------------20 第四章 無溫度梯度雙板反向驅動流場 --------------------23 §4.1 反向等速驅動定常流場 ----------------------------------23 §4.2 定常對稱流場間互相穿遞 --------------------------------27 §4.3 定常對稱與不對稱流場間做穿遞 ---------------------28 §4.4 強不對稱流場與對稱流場隨時間做穿遞 ------------29 §4.5 穩定度與流場穿遞之相關性 ----------------------------30 第五章 具溫度梯度雙板反向驅動流場 --------------------32 §5.1 流場熱傳導驗證 --------------------------------------------32 §5.2 雷諾數=150,具溫度梯度平板反向移動驅動流體 33 §5.3 雷諾數=175,具溫度梯度平板反向移動驅動流體 34 §5.4 雷諾數=260,具溫度梯度平板反向移動驅動流體 35 §5.5 雷諾數=350,具溫度梯度平板反向移動驅動流體 36 §5.6 雷諾數=420,具溫度梯度平板反向移動驅動流體 37 §5.7 雷諾數=589,具溫度梯度平板反向移動驅動流體 37 §5.8 具溫度梯度平板反向移動驅動流體的穩定性與熱傳效率 --38 第六章 結論 -----------------------------------40 參考文獻 ------------------------------------------42 表目錄 Table 5.8-1 流場在各別雷諾數下隨溫度梯度變化的流場轉折點位置------100 圖目錄 Fig4.1-1 長寬比1.96的方形體,以X:Y=91:151所繪網格圖 -----45 Fig4.1-2 無溫度梯度流場隨雷諾數變化驅勢----------46 Fig4.1-3 方形體中心點流線函數值隨雷諾數變化的分岐曲線------48 Fig4.1-4 雷諾數在260多重定常解的流線函數圖 ------49 Fig4.1-5 雷諾數在260多重定常解,取一半長度在X方向上的垂直速度分佈---------50 Fig4.1-6 雷諾數在829多重定常解的流線函數圖 ---51 Fig4.1-7 雷諾數在829多重定常解,取一半寬度延Y方向上的水平速度分佈-------52 Fig4.1-8 雷諾數在1560多重穩態解的流線函數圖-----53 Fig4.1-9 取方形體一半寬度,延Y方向上的水平速度,並與Kuhlmann[4]實驗數據比較 ----54 Fig4.2-1 雷諾數由149加速到311,穩定對稱流場隨時間上做穿遞的流場變化圖 ------55 Fig4.2-2 雷諾數由149加速到311,穩定對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖------56 Fig4.2-3 雷諾數由559減速到311,穩定cat’s eye流場隨時間上做穿遞的流場變化圖------57 Fig4.2-4 雷諾數由559減速到311,穩定cat’s eye流場隨時間上做穿遞,流線函數中心點隨時間的變化圖 -----58 Fig4.2-5 雷諾數固定在311,不穩定two-vortex流場隨時間上做穿遞的流場變化圖---------59 Fig4.2-6 雷諾數固定在311,不穩定two-vortex流場隨時間上做穿遞,流線函數中心點隨時間的變化圖 -----60 Fig4.3-1 雷諾數由738加速到866,穩定強不對稱流場隨時間上做穿遞的流場變化圖--------61 Fig4.3-2 雷諾數由738加速到866,穩定強不對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖 ------62 Fig4.3-3 雷諾數由738加速到866,不穩定弱不對稱流場隨時間上做穿遞的流場變化圖---------63 Fig4.3-4 雷諾數由738加速到866,不穩定弱不對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖 ---64 Fig4.3-5 雷諾數由866減速到733,不穩定弱不對稱流場隨時間上做穿遞的流場變化圖-------65 Fig4.3-6 雷諾數由866減速到733,不穩定弱不對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖----66 Fig4.3-7 雷諾數固定在733,不穩定弱不對稱流場隨時間上做穿遞的流場變化圖--------67 Fig4.3-8 雷諾數固定在733,不穩定弱不對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖-----68 Fig4.4-1 雷諾數由1146加速到1551,穩定對稱流場隨時間上做穿遞的流場變化圖------------69 Fig4.4-2 雷諾數由1146加速到1551,穩定對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖----------70 Fig4.4-3 雷諾數由1146加速到1551,穩定強不對稱流場隨時間上做穿遞的流場變化圖---------71 Fig4.4-4 雷諾數由1146加速到1551,穩定強不對稱流場隨時間上做穿遞,流線函數中心點隨時間的變化圖--72 Fig5.1-1 純熱傳效應流場等溫線分佈圖-------73 Fig5.2-1 雷諾數固定在150,流場隨溫度梯度改變的流線變化圖----------------------74 Fig5.2-2 雷諾數固定在150,流場隨溫度梯度改變的等溫線變化圖----------------------75 Fig5.2-3 雷諾數固定在150,對流熱傳比隨溫度梯度改變的變化圖--------------------76 Fig5.2-4 雷諾數固定在150,流線函數中心隨溫度梯度改變的變化圖------------------77 Fig5.3-1 雷諾數固定在175,流場隨溫度梯度改變的流線變化圖--------------------78 Fig5.3-2 雷諾數固定在175,流場隨溫度梯度改變的等溫線變化圖--------------------79 Fig5.3-3 雷諾數固定在175,對流熱傳比隨溫度梯度改變的變化圖---------------------80 Fig5.3-4 雷諾數固定在175,流線函數中心隨溫度梯度改變的變化圖---------------------81 Fig5.4-1 雷諾數固定在260,流場隨溫度梯度改變的流線變化圖------------------------82 Fig5.4-2 雷諾數固定在260,流場隨溫度梯度改變的等溫線變化圖----------------83 Fig5.4-3 雷諾數固定在260,對流熱傳比隨溫度梯度改變的變化圖------------------------------84 Fig5.4-4 雷諾數固定在260,流線函數中心隨溫度梯度改變的變化圖-------------------------85 Fig5.5-1 雷諾數固定在350,流場隨溫度梯度改變的流線變化圖-----------------86 Fig5.5-2 雷諾數固定在350,流場隨溫度梯度改變的等溫線變化圖-------------87 Fig5.5-3 雷諾數固定在350,對流熱傳比隨溫度梯度改變的變化圖-------------88 Fig5.5-4 雷諾數固定在350,流線函數中心隨溫度梯度改變的變化圖-----------89 Fig5.6-1 雷諾數固定在420,流場隨溫度梯度改變的流線變化圖------------90 Fig5.6-2 雷諾數固定在420,流場隨溫度梯度改變的等溫線變化圖 ----------91 Fig5.6-3 雷諾數固定在420,對流熱傳比隨溫度梯度改變的變化圖 -----------92 Fig5.6-4 雷諾數固定在420,流線函數中心隨溫度梯度改變的變化圖 ---------93 Fig5.7-1 雷諾數固定在589,流場隨溫度梯度改變的流線變化圖 -------94 Fig5.7-2 雷諾數固定在589,流場隨溫度梯度改變的等溫線變化圖------- 95 Fig5.7-3 雷諾數固定在589,對流熱傳比隨溫度梯度改變的變化圖--------96 Fig5.7-4 雷諾數固定在589,流線函數中心隨溫度梯度改變的變化圖---------97 Fig5.8-1 流場在個別雷諾數下,對流熱傳比隨溫度梯度的變化圖----------------98 Fig5.8-2 流場穩定度狀態分佈圖---------------------99

    [1] Pan, F. and Acrivos, A. (1967). Steady flows in rectangular cavities. J. Fluid Mech., 28, 643-655.
    [2] Freitas, C. J., Street, R. L., Findikakis, A. N., and Koseff, J. R. (1985). Numerical simulation of three-dimensional flow in a cavity. Int. J. Num. Meth. Fluids, 5, 561.
    [3] Ghia U., Ghia K. N., and Shin C. T.(1982). High-Re Solutions for
    incompressible Flow Using the Navier-Stokes Equation and a Multigrid Method. J. Comp. Physics 48,387-411
    [4] Kuhlmann, H. C., Wanschura, M., and Rath, H. J. (1997). Flow in two-sided lid-driven cavities: Non-uniqueness, instabilities, and cellular structures. J. Fluid Mech., 336, 267-299.
    [5] Goodrich, J .W., Gustafson, K., and Halasi, K. (1990). Hopf bifurcation in the driven cavity. J. Comput. Phys., 90, 219-261.
    [6] Shen, J. (1991). Hopf bifurcation of the unsteady regularized driven cavity flow. J. Compt. Phys., 95, 228-245.
    [7] Albensoeder S., Kuhlmann H. C. and Rath H. J. (2001). Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities. Theor. Comp. Fluid Dyn. 14,223-241.
    [8] Kelmanson, M. A. and Lonsdale, B. (1996). Eddy genesis in the double-lid-driven cavity. J. Mech. Appl. Math, 49, 635-655.
    [9] Brons, M. and Hartnack, J. N. (1999). Streamline topologies near simple degenerate critical points in two-dimensional flow boundaries. Phys. Fluids, 11, 314-324.
    [10] Cao, Z. and Esmail, M. N. (1995). Numerical study on hydrodynamicsof short-dwell paper coaters. AIChE J., 41, 1833-1842.
    [11] Aidun,C.K., Triantafillopoulos, N.G., (1991). Global stability of a lid-driven cavity with through flow: Flow visualization studies. phys.Fluids A, 3, 2081-2091.
    [12] Aidun, C. K. and Triantafillopoulos, N. G. (1997). High-speed blade coating. In S. F. Kistler and P. M. Schweozer (Eds.), Liquid film coating chapter 12d, (pp.637). London: Chapman and Hall.
    [13] Benson, J. D. and Aidun, C. K. (1992). Transition to unsteady non-periodic states in a through-flow lid-drive cavity. Phys. Fluids A, 2316-2319.
    [14] Alleborn, N., Raszillier, H., and Durst, F. (1999). Lid-driven cavity with heat and mass transport. Int. J. Heat Mass Transfer, 42, 833-853.
    [15] Gaskell, P. H., Summers, J. L., Thompson, H. M., and Savage, M. D. (1996). Creeping flow analysis of free surface cavity flows. Theor. Comput. Fluid Dyn., 8, 415-433.
    [16] Saad, Y.(1992). Numerical methods for large eigenvalues problem. Halsted.
    [17] Sorensen, D.C.(1992), Implicit application of polynomial filters in a k-step Arnoldi method, SLAM(Soc. Ind. Appl. Math.) J. Matrix Anal. Appl. 13, pp. 357-367
    [18] Jana, S.C., Metcalfe, G., and Ottino, J. M. (1994a). Experimental and numerical studies of mixing in complex Stokes flow: the vortex mixing flow and multi-cellular cavity flow. J. Fluid Mech., 269, 199-246.
    [19] Koseff, J. R., Street, R. L., Gresho, P. M., Upson, C. D., Humphrey, J. A. C., and To, W.-M. (1983). A three-dimensional lid-driven cavity flow: Experiment and simulation. In Proceedings of the 3rd International Conference on Numerical Methods in Laminar and Turbulent Flow.
    [20] Keller, H. B. (1977). Numerical solution of bifurcation and nonlinear eigenvalue problem. In Applications of Bifurcation Theory, edited by P. Rabinowitz, Academic Press, 359.
    [21] Prasad, A. K. and Koseff, J. R. (1989). Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A, 1, 208-218.
    [22] Ramanan, N. and Homsy, G. M. (1994). Linear stability of lid-driven cavity flow. Phys. Fluids, 8, 2690-2701.
    [23] Tuckerman, L. S. (1989). Steady-state solving via Stokes preconditioning; Recursion relations for elliptic operators. In Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics, edited by D. L. Dwoyer, M. Y. Hussaini and R. G. Voigt, Springer-Verlag.

    下載圖示 校內:立即公開
    校外:2002-07-08公開
    QR CODE