簡易檢索 / 詳目顯示

研究生: 朱順翔
Zhu, Shun-Xiang
論文名稱: 基於計算熱力學輔助強韌Al-Co-Cr-Fe-Ni多主元合金設計
Calphad-assisted design of the Al-Co-Cr-Fe-Ni multiprincipal component alloys with high strength and high ductility
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 106
中文關鍵詞: 多主元合金CALPHAD合金設計機械性質
外文關鍵詞: Multiprincipal component alloys, CALPHAD, Alloy design, Mechanical properties
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多主元合金,亦稱高熵合金,是一種全新的合金概念,它突破了傳統合金中單一種主要元素的框架及限制,採用多個主要元素來組成合金。因具有多種主元的特點,使得多主元合金的微觀組織和性能在許多方面有別于傳統合金。作為一個材料研究的新興領域,多主元合金有著很高的研究價值與廣汎的應用前景。
    本研究以Al-Co-Cr-Fe-Ni多主元合金作為研究對象,使用熱力學計算相圖法 (CALPHAD),通過計算熱力學模擬來預測其相形成,瞭解各元素對成相之影響,並希望藉助計算熱力學模擬的方法來尋找合金成分、相體積分率與機械性質之間的關聯,進而設計出一款兼具強度和韌性的Al-Co-Cr-Fe-Ni多主元合金。
    結果顯示,在Al-Co-Cr-Fe-Ni系統中,Co、Ni為FCC相形成元素,Cr為BCC相形成元素,Al為B2相形成元素,Fe為中性元素。CALPHAD可以較為準確地模擬Al-Co-Cr-Fe-Ni多主元合金在凝固過程中發生的反應以及鑄造組織中的相種類,但相體積分率的具體數值與實驗值存在誤差。通過從FCC單相中析出B2相與L12相的方式,目標合金可以兼具良好的強度與韌性,其降伏強度、極限拉伸強度、伸長率分別為470MPa、790MPa、48%,強塑積可達38GPa·%。

    Multiprincipal component alloys, also known as high-entropy alloys, are a new concept of alloys that breaks through the limitation of traditional alloy design which is usually based on one or, at most two key elements, and uses multiple principal elements to form alloys. In this study, the Al-Co-Cr-Fe-Ni system was used as the research object. The CALPHAD approach was used to predict the phase formation and understand the impact of each element. It’s hoped that CALPHAD can be used to find the correlation between alloy composition, phase volume fraction and mechanical properties, and design an Al-Co-Cr-Fe-Ni multiprincipal component alloy with high strength and high ductility. The results show that in the Al-Co-Cr-Fe-Ni system, Co and Ni are FCC phase stabilizers, Cr is a BCC phase stabilizer, Al is a B2 phase stabilizer, and Fe is a neutral element. CALPHAD can accurately simulate the reaction of Al-Co-Cr-Fe-Ni multi-principal component alloy during the solidification process and the phase type in the as-cast structure, but the values of volume fraction are inaccurate with the experimental values. By precipitating B2 and L12 from the FCC matrix, the target alloy appears high strength and high ductility, and its YS, UTS and elongation are 470 MPa, 790 MPa, and 48%, respectively.

    摘要 II Abstract III 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 前言 1 第二章 文獻回顧 2 2.1多主元合金 2 2.2多主元合金的相、微結構與其機械性質 5 2.2.1鑄造態多主元合金的相、微結構與其機械性質 5 2.2.2析出強化態多主元合金的相、微結構與其機械性質 8 2.3 CALPHAD 14 2.3.1 CALPHAD的原理與特點 14 2.3.2 CALPHAD於多主元合金設計的應用 18 2.4 Al-Co-Cr-Fe-Ni系統多主元合金 23 2.4.1鑄造態Al-Co-Cr-Fe-Ni系統多主元合金 23 2.4.2析出強化態Al-Co-Cr-Fe-Ni系統多主元合金 28 2.4.3 CALPHAD於Al-Co-Cr-Fe-Ni系統多主元合金的研究 32 第三章 實驗方法與步驟 35 3.1實驗流程 35 3.2熱力學資料庫驗證 37 3.3熱力學計算瞭解各元素對成相之影響 41 3.4建立機械性質與相體積分率的回歸模型 44 3.5高通量計算與結果篩選 45 3.6目標合金製備 47 3.7微結構和晶體結構分析 47 3.8凝固反應及相變溫度之熱分析 48 3.9機械性質量測 49 3.9.1硬度測試 49 3.9.2拉伸試驗 50 第四章 結果與討論 52 4.1熱力學資料庫評估 52 4.2熱力學計算瞭解各元素對成相之影響 61 4.3鑄造態強韌Al-Co-Cr-Fe-Ni多主元合金設計 67 4.3.1鑄造態合金A1相、微結構與凝固反應之分析 73 4.3.2鑄造態合金A2相、微結構與凝固反應之分析 79 4.3.3鑄造態合金A1、A2機械性質之分析 85 4.4析出強化態強韌Al-Co-Cr-Fe-Ni多主元合金設計 90 4.4.1析出強化態合金P1之成分、制程設計 92 4.4.2析出強化態合金P1之相、微結構分析 95 4.4.3析出強化態合金P1之機械性質分析 97 第五章 結論 100 參考文獻 102 附錄 106

    [1] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, "Microstructural development in equiatomic multicomponent alloys," Materials Science and Engineering: A, vol. 375-377, pp. 213-218, 2004.
    [2] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6, no. 5, pp. 299-303, 2004.
    [3] R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, and H. Fu, "Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility," Acta Materialia, vol. 144, pp. 129-137, 2018.
    [4] 葉均蔚, "高熵合金的發展," 華岡工程學報, no. 27, pp. 1-18, 2011.
    [5] J. Y. He, H. Wang, H. L. Huang, X. D. Xu, M. W. Chen, Y. Wu, X. J. Liu, T. G. Nieh, K. An, and Z. P. Lu, "A precipitation-hardened high-entropy alloy with outstanding tensile properties," Acta Materialia, vol. 102, pp. 187-196, 2016.
    [6] T. Nishizawa, "Progress of CALPHAD," Materials Transactions, JIM, vol. 33, no. 8, pp. 713-722, 1992.
    [7] F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, and C.T. Liu, "Designing eutectic high entropy alloys of CoCrFeNiNbx," Journal of Alloys and Compounds, vol. 656, pp. 284-289, 2016.
    [8] W. H. Liu, Z. P. Lu, J. Y. He, J. H. Luan, Z. J. Wang, B. Liu, Y. Liu, M. W. Chen, and C. T. Liu, "Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases," Acta Materialia, vol. 116, pp. 332-342, 2016.
    [9] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, "Refractory high-entropy alloys," Intermetallics, vol. 18, no. 9, pp. 1758-1765, 2010.
    [10] W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, and J. W. Yeh, "Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys," Intermetallics, vol. 26, pp. 44-51, 2012.
    [11] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li, "Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range," Acta Materialia, vol. 124, pp. 143-150, 2017.
    [12] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li, "A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys," Scientific Reports, vol. 4, pp. 6200, 2014.
    [13] X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, and Y. Zhao, "Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy," Acta Materialia, vol. 141, pp. 59-66, 2017.
    [14] B. Gwalani, V. Soni, M. Lee, S. A. Mantri, Y. Ren, and R. Banerjee, "Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy," Materials & Design, vol. 121, pp. 254-260, 2017.
    [15] C. Zhang, F. Zhang, H. Diao, M. C. Gao, Z. Tang, J. D. Poplawsky, and P. K. Liaw, "Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys," Materials & Design, vol. 109, pp. 425-433, 2016.
    [16] CompuTherm LLC, "PanHEA-Thermodynamic database for multi-component high entropy alloys," 2017.
    [17] Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh, "Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys," Journal of Alloys and Compounds, vol. 488, no. 1, pp. 57-64, 2009.
    [18] W. R. Wang, W. L. Wang, and J. W. Yeh, "Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures," Journal of Alloys and Compounds, vol. 589, pp. 143-152, 2014.
    [19] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D. M. Fabijanic, "Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys," Materials Science and Engineering: A, vol. 633, pp. 184-193, 2015.
    [20] Y. Lv, R. Hu, Z. Yao, J. Chen, D. Xu, Y. Liu, and X. Fan, "Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys," Materials & Design, vol. 132, pp. 392-399, 2017.
    [21] G. Liu, L. Liu, X. Liu, Z. Wang, Z. Han, G. Zhang, and A. Kostka, "Microstructure and mechanical properties of Al0.7CoCrFeNi high-entropy-alloy prepared by directional solidification," Intermetallics, vol. 93, pp. 93-100, 2018.
    [22] J. Wang, T. Guo, J. Li, W. Jia, and H. Kou, "Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy," Materials Chemistry and Physics, vol. 210, pp. 192-196, 2018.
    [23] Y. Ma, Q. Wang, B. B. Jiang, C. L. Li, J. M. Hao, X.N. Li, C. Dong, T.G. Nieh, "Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions," Acta Materialia, vol. 147, pp. 213-225, 2018.
    [24] T. T. Shun and Y. C. Du, "Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy," Journal of Alloys and Compounds, vol. 479, no. 1, pp. 157-160, 2009.
    [25] C. M. Lin and H. L. Tsai, "Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy," Intermetallics, vol. 19, no. 3, pp. 288-294, 2011.
    [26] Y. F. Kao, S. K. Chen, T. J. Chen, P. C. Chu, J. W. Yeh, and S. J. Lin, "Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys," Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1607-1614, 2011.
    [27] W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, "Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy," Materials & Design, vol. 51, pp. 854-860, 2013.
    [28] Z. Fu, W. Chen, H. Wen, Z. Chen, and E. J. Lavernia, "Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy," Journal of Alloys and Compounds, vol. 646, pp. 175-182, 2015.
    [29] Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu, "Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering," Materials Science and Engineering: A, vol. 648, pp. 217-224, 2015.
    [30] Q. Tang, Y. Huang, H. Cheng, X. Liao, T. G. Langdon, and P. Dai, "The effect of grain size on the annealing-induced phase transformation in an Al0·3CoCrFeNi high entropy alloy," Materials & Design, vol. 105, pp. 381-385, 2016.
    [31] A. Munitz, S. Salhov, S. Hayun, and N. Frage, "Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy," Journal of Alloys and Compounds, vol. 683, pp. 221-230, 2016.
    [32] Z. Tang, O. N. Senkov, C. M. Parish, C. Zhang, F. Zhang, L. J. Santodonato, G. Wang, G. Zhao, F. Yang, and P. K. Liaw, "Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization," Materials Science and Engineering: A, vol. 647, pp. 229-240, 2015.
    [33] B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J. Y. Hwang, S. J. Nam, H. Ryu, S. H. Hong, and R. Banerjee, "Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2," Scripta Materialia, vol. 123, pp. 130-134, 2016.
    [34] J. C. Rao, H. Y. Diao, V. Ocelik, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J. D. Poplawsky, Y. Zhou, P. K. Liaw, and J. Th. M. De Hosson, "Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal," Acta Materialia, vol. 131, pp. 206-220, 2017.
    [35] Q. H. Tang, Y. Huang, Y. Y. Huang, X. Z. Liao, T. G. Langdon, and P. Q. Dai, "Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing," Materials Letters, vol. 151, pp. 126-129, 2015.
    [36] Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P. K. Liaw, F. Xu, and L. Sun, "The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys," Metals, vol. 7, no. 2, pp. 57, 2017.
    [37] S. G. Ma, S. F. Zhang, J. W. Qiao, Z. H. Wang, M. C. Gao, Z. M. Jiao, H. J. Yang, and Y. Zhang, "Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification," Intermetallics, vol. 54, pp. 104-109, 2014.
    [38] J. Wang, S. Niu, T. Guo, H. Kou, and J. Li, "The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy," Journal of Alloys and Compounds, vol. 710, pp. 144-150, 2017.
    [39] S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, "Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy," Materials Science and Engineering: A, vol. 671, pp. 82-86, 2016.
    [40] T. Bhattacharjee, R. Zheng, Y. Chong, S. Sheikh, S. Guo, I. T. Clark, T. Okawa, I. S. Wani, P. P. Bhattacharjee, A. Shibata, and N. Tsuji, "Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy," Materials Chemistry and Physics, vol. 210, pp. 207-212, 2018.
    [41] D. Li and Y. Zhang, "The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures," Intermetallics, vol. 70, pp. 24-28, 2016.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE