簡易檢索 / 詳目顯示

研究生: 陳榮圻
Chen, Rong-Qi
論文名稱: 基於3D人台的電腦輔助服裝設計系統的開發
The Development of a Computer-aided Fashion Design System Based on 3D Mannequin
指導教授: 蕭世文
Hsiao, Shih-Wen
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 87
中文關鍵詞: 服裝設計3D人台曲面攤平最小能量電腦輔助服裝設計
外文關鍵詞: Fashion design, 3D Mannequin, Surface flatten, Minimum energy, Computer aided fashion design
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 『服裝設計』是一個與我們日常生活息息相關的產業,藉由電腦輔助服裝設計能夠有效提昇產品開發的效率,其中3D人台串連起整個設計系統平台的開發與應用。應用曲面攤平方法展開人台上的3D曲面至2D平面是一個常見的方法,可得到用於設計和製造中的2D裁片,這使得一個符合服裝設計所需的3D人台資料是相當重要的。為達到這個目標,本研究提出此基於3D人台的電腦輔助服裝設計系統的開發,主要包含兩個部分:3D人台和曲面攤平。
    在所提出的以特徵線重建3D人台曲面的系統化方法中,逆向工程方法先用於掃瞄服裝設計專業所用的人台模型,而在經由特徵線的分割後,可從掃瞄資料中萃取出代表造形特徵的網格點,接著以B-spline曲面重建整個3D人台的外形。同時,以最小能量為主的切線向量調整方法修正B-spline曲面間銜接的連續性,可提升造形曲面的品質。當這個3D人台應用到電腦輔助服裝設計系統平台上時,可以形變出不同人體尺寸的3D外形。為了從中得到設計所需的2D裁片,本研究從布料特性的觀點,提出此最小能量為主的曲面攤平方法。而在這個方法論中,3D曲面是以測地線法展開至2D平面上,然後近似隱含法能夠即時而穩定釋放網格中積累的應變能以修正其誤差。為了提高其準確度,進一步裁切網格釋放網格中的能量是相當常見的方法,這讓所得到的2D裁片自然產生有意義的裂縫。透過所建構的3D人台,許多服裝設計的技法可重現在2D裁片上,有助於提升電腦輔助服裝設計的層次。
    最後,本研究以幾個案例研究說明和驗證所提方法論的可行,並將它們整合在一個發展中的電腦輔助服裝設計系統平台上,達到以同步設計方法進行產品開發。

    Fashion Design is an industry closely connected to our daily life. Computer-aided fashion design can enhance the efficiency of product development, in which a 3D mannequin links the development and application of the entire design system. A typical application is that surface flattening enables 3D surface on the 3D mannequin which can be developed on the 2D platform. Besides, the obtained 2D pattern can be used in the field of design and manufacturing, thus rendering the 3D mannequin data required for fashion design appears very important. To achieve this objective, this study provides the development of a computer-aided fashion design system based on 3D mannequin, and it mainly includes two parts: 3D mannequin and surface flattening.
    This study proposed a systematic method for surface reconstruction of 3D mannequins based on feature curves. First of all, the study applied reverse engineering methods to scan a mannequin model commonly used in the fashion design profession by extracting grid points that represent the shape features from the scanned data after the segmentation of the mannequin model through feature surfaces. Then, the shape of the entire 3D mannequin is reconstructed using B-spline surfaces. Simultaneously, the continuity among the connected B-spline surfaces is adjusted with tangent vector adjustment methods based on the minimum energy required for improving the quality of the shaped surfaces. When this 3D Mannequin is implemented in the computer-aided fashion design system, different size of body can create by shape morphing. Besides, this study describes surface flattening based on minimum energy methods according to the property of different fabrics. In this methodology, 3D surface is developed on the 2D platform by geodesic method, and then strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. Through the developed 3D mannequin, many techniques in fashion design can be applied to the 2D pattern; it enhances the level of computer-aided fashion design.
    Finally, this research uses several case studies to illustrate and verify the feasibility of this methodology, and they is applied and integrated to the computer-aided fashion design system being developed to achieve product development using synchronous design methods.

    ABSTRACT I ACKNOWLEDGEMENT IV CONTENTS V LIST OF FIGURES VII NOMENCLATURE X 1. Introduction 1 2. Literature review 9 2.1. Related literature of mannequin 9 2.2. Related literature of surface flattening 11 2.3. Other related literature 14 3. Method 16 3.1. Definition of mannequin 16 3.2. Surface reconstruction based on the Gauss-Newton algorithm 21 3.3. Convergence of parametric surfaces 27 3.3.1. Conditions for G0 and G1 continuity 29 3.3.2. Method for G2 continuity correction 33 3.3.3. Detection of surface continuity 37 3.4. Numerical method for releasing energy 39 3.4.1. Mass-spring model 39 3.4.2. Strain energy 40 3.4.3. Approximate implicit integration 43 3.5. Cloth patterns with fabric behavior 46 4. A computer-aided fashion design system based on 3D mannequin 48 5. Case studies 53 5.1. Case study of the 3D mannequin 53 5.1.1. The obtainment of grid points for a mannequin. 53 5.1.2. Reconstruction of the 3D mannequin surface and continuity correction of surface convergence 58 5.1.3. Shape morphing of 3D mannequin 59 5.2. Surface flattening 65 5.2.1. Form design mainly based on 3D mannequin 65 5.2.2. The flattening for 3D surface to 2D patterns 66 5.2.3. Surface cutting 69 5.2.4. Other case studies for surface flattening 70 5.2.5. 2D pattern with fabric behavior 72 6. Results discussion 75 7. Conclusion 79 REFERENCES 81 LIST OF PUBLICATION 86 VITA 87

    [1] H.Q. Huang, P.Y. Mok, Y.L. Kwok, J.S. Au, Block pattern generation: From parameterizing human bodies to fit feature-aligned and flattenable 3D garments, Comput. Ind. 63 (2012) 680-691.
    [2] C.K. Au, M.M.F. Yuen, Feature-based reverse engineering of mannequin for garment design, Comput. Aided Des. 31 (1999) 751-759.
    [3] C.K. Au, M.M.F. Yuen, A semantic feature language for sculptured object modeling, Comput. Aided Des. 32 (2000) 63-74.
    [4] S.M. Kim, T.J. Kang, Garment pattern generation from body scan data, Comput. Aided Des. 35 (2002) 611-618.
    [5] C.K. Au, Y.S. Ma, Garment pattern definition, development and application with associative feature approach, Comput. Ind. 61 (2010) 524-531.
    [6] J. McCartney, B.K. Hinds, K.W. Chong, Pattern flattening for orthotropic materials, Comput. Aided Des. 37 (2005) 631-44.
    [7] C.C.L. Wang, T.K.K. Chang, M.M.F. Yuen, From laser-scanned data to feature human model: a system based on fuzzy logic concept, Comput. Aided Des. 35 (2003) 241-253.
    [8] C.C.L. Wang, Y. Wang, T.K.K. Chang, M.M.F. Yuen, Virtual human modeling from photographs for garment industry, Comput. Aided Des. 35 (2003) 577-589.
    [9] C.C.L. Wang, Parameterization and parametric design of mannequins, Comput. Aided Des. 37 (2005) 83-98.
    [10] C.C.L. Wang, Y. Wang, M.M.F. Yuen, Feature based 3D garment design through 2D sketches, Comput. Aided Des. 35 (2002) 659-672.
    [11] C.C.L. Wang, Y. Wang, M.M.F. Yuen, Design automation for customized apparel products, Comput. Aided Des. 37 (2005) 675-691.
    [12] J. Wang, G. Lu, W. Li, L. Chen, Y. Sakaguti, Interactive 3D garment design with constrained contour curves and style curves, Comput. Aided Des. 41 (2009) 614-625.
    [13] Y. Ke, S. Fan, W. Zhu, A. Li, F. Liu, X. Shi, Feature-based reverse modeling strategies, Comput. Aided Des. 38 (2006) 485-506.
    [14] M. Nieser, C. Schulz, K. Polthier, Patch layout from feature graphs, Comput. Aided Des. 42 (2010) 213-220.
    [15] Y. Ke, W. Zhu, F. Liu, X. Shi, Constrained fitting for 2D profile-based reverse modeling, Comput. Aided Des. 38 (2006) 101-114.
    [16] H. Park, K. Kim, Smooth surface approximation to serial cross-sections, Comput. Aided Des. 28 (1996) 995-1005.
    [17] C.F. Borges, T. Pastva, Total least squares fitting of Bezier and B-spline curves to ordered data, Comput. Aided Geom. Des. 19 (2002) 275-289.
    [18] P. Kiciak, Bicubic B-spline blending patches with optimized shape, Comput. Aided Des. 43 (2011) 133-144.
    [19] H. Park, Lofted B-spline surface Interpolation by linearly constrained energy minimization, Comput. Aided Des. 35 (2003) 1261-1268.
    [20] H. Park, B-spline surface fitting based on adaptive knot placement using dominant columns, Comput. Aided Des. 43 (2011) 258-264.
    [21] H. Park, K. Kim, S.C. Lee, A method for approximate NURBS curve compatibility based on multiple curve refitting, Comput. Aided Des. 32 (2000) 237-252.
    [22] H. Pottmann, S. Leopoldseder, A concept for parameter surface fitting which avoids the parameterization problem, Comput. Aided Geom. Des. 20 (2003) 343-362.
    [23] H. Yang, W. Wang, J. Sun, Control point adjustment for B-spline curve approximation, Comput. Aided Des. 36 (2004) 639-652.
    [24] F. Yoshimoto, T. Harada, Y. Yoshimoto, Data fitting with a spline using a real-coded genetic algorithm, Comput. Aided Des. 35 (2003) 751-760.
    [25] D.Y. Cho, K.Y. Lee, T.W. Kim, Interpolating G1 Bezier surfaces over irregular curve networks for ship hull design, Comput. Aided Des. 38 (2006) 641-660.
    [26] J. Fan, J. Peters, Smooth Bi-3 spline surfaces with fewest knots, Comput. Aided Des. 43 (2011) 180-187.
    [27] K.C. Hui, Shape blending of curves and surfaces with geometric continuity, Comput. Aided Des. 31 (1999) 819-828.
    [28] H. Lin, W. Chen, H. Bao, Adaptive patch-based mesh fitting for reverse engineering, Comput. Aided Des. 39 (2007) 1134-1142.
    [29] M.J. Milroy, C. Bradley, G.W. Vickers, D.J. Weir, G1 continuity of B-spline surface patches in reverse engineering, Comput. Aided Des. 27 (1995) 471-478.
    [30] R. Tookey, A. Ball, Approximate G1 continuous interpolation of a rectangular network of rational cubic curves, Comput. Aided Des. 28 (1996) 1007-1016.
    [31] J.Y. Li, W.D. Ueng, G2 continuity for multiple surfaces fitting, Int. J. Adv. Manuf. Technol. 17 (2001) 575-585.
    [32] W.K. Wang, H. Zhang, H. Park, J.H. Yong, J.C. Paul, Reducing control points in lofted B-spline surface Interpolation using common knot vector determination, Comput. Aided Des. 40 (2008) 999-1008.
    [33] S.W. Hsiao, J.C. Chuang, A Reverse Engineering Based Approach for Product Form Design, Des. Stud. 24 (2003) 155-171.
    [34] K.C. Hui, Y. Li, A feature-based shape blending technique for Industrial design, Comput. Aided Des. 10 (1998) 823-834.
    [35] Azariadis PN, Aspragathos NA. Design of plane development of doubly curved surface. Comput Aided Des 1997; 29: 675-685.
    [36] Bennis C, Vézien JM, Iglésias G. Piecewise surface flattening for non-distorted texture mapping. Comput Graph 1991; 25: 237-46.
    [37] Hoschek J. Approximation of surfaces of revolution by developable surfaces. Comput Aided Des 1997; 30: 757-763.
    [38] McCartney J, Hinds BK, Seow BL. The flattening of triangulated surfaces incorporating darts and gussets. Comput. Aided Des 1999; 31: 249-260.
    [39] Wang CCL, Chen SSF, Yuen MMF. Surface flattening based on energy model. Comput Aided Des 2002; 34: 823-833.
    [40] Azariadis PN, Aspragathos NA. On using planar developments to perform texture mapping on arbitrarily curved surfaces. Comput Graph 2000; 24: 539-554.
    [41] Azariadis PN, Aspragathos NA. Geodesic curvature preservation in surface flattening through constrained global optimization. Comput Aided Des 2001; 33: 581-591.
    [42] McCartney J, Hinds BK, Chong KW. Pattern flattening for orthotropic materials. Comput Aided Des 2005; 37: 631-644.
    [43] Wang CCL, Tang K, Yeung BML. Freeform surface flattening based on fitting a woven mesh model. Comput Aided Des 2005; 37: 799-814.
    [44] Zhong Y, Xu B. A physically based method for triangulated surface flattening. Comput Aided Des 2006; 38: 1062-1073.
    [45] Au CK, Ma YS. Garment pattern definition, development and application with associative feature approach. Comput Ind 2010;61:524-531.
    [46] Wang CCL. WireWarping: A fast surface flattening approach with length-preserved feature curves. Comput Aided Des 2008;40:381-395.
    [47] Huang HQ, Mok PY, Kwok YL, Au JS. Block pattern generation: From parameterizing human bodies to fit feature-aligned and flattenable 3D garments. Comput Ind 2012;63:680-691.
    [48] Wang CCL, Tang K. Woven model based geometric design of elastic medical braces. Comput Aided Des 2007;39:69-79.
    [49] Wang CCL, Tang K. Pattern computation for compression garment by a physical/geometric approach. Comput Aided Des 2010;42:78-85.
    [50] Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Proceedings of Graphics Interface, pp.147-154, 1995.
    [51] Baraff D, Witkin A. Large steps in cloth simulation. Comput. Graph 1998; 32: 43-52.
    [52] Desbrun M, Schroder BPA. Interactive animation of structured deformable objects. Proceedings of Graphics Interface, pp. 1-8, 1999.
    [53] Kang YM, Choi JH, and Cho HG. Fast and stable Animation of Cloth with an approximated implicit method. Proceedings of Computer Graphics International, pp.247-255, 2000.
    [54] Kang YM, Choi JH, Cho HG, Park CJ. An efficient animation of wrinkled cloth with approximate implicit integration. Vis Comput 2001; 17: 147-157.
    [55] Kang YM, Cho HG. Bilayered approximate integration for rapid and plausible animation of virtual cloth with realistic wrinkles. Proceedings of the Computer Animation, pp.203-211, 2002.
    [56] Au CK, Yuen MMF. Feature-based reverse engineering of mannequin for garment design. Comput Aided Des 1999; 31:751-9.
    [57] Au CK, Yuen MMF. A semantic feature language for sculptured object modeling. Comput Aided Des 2000; 32: 63-74.
    [58] Kim SM, Kang TJ. Garment pattern generation from body scan data. Comput Aided Des 2002; 35: 611-28.
    [59] Au CK, Ma YS. Garment pattern definition, development and application with associative feature approach. Comput Ind 2010; 61: 524-31.
    [60] McCartney J, Hinds BK, Chong KW. Pattern flattening for orthotropic materials. Comput Aided Des 2005; 37: 631-44.
    [61] Hsiao SW, Chen RQ. A study of surface reconstruction for 3D mannequins based on feature curves. Comput Aided Des 2013; 45: 1426-1441.

    下載圖示 校內:2019-02-13公開
    校外:2019-02-13公開
    QR CODE