| 研究生: |
陳家妤 Chen, Chia-Yu |
|---|---|
| 論文名稱: |
氣候變遷下二仁溪逕流量與輸砂量長期趨勢之影響分析 Analyzing Long-term Streamflow and Sediment Yields in Erren River Under Climate Change |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氣候變遷 、逕流量 、輸砂量 、SRH-2D 、HEC-HMS |
| 外文關鍵詞: | climate change, streamflow, sediment yield, HEC-HMS, SRH-2D |
| 相關次數: | 點閱:70 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣處於熱帶及副熱帶季風氣候區,降雨量豐沛,但因降雨時空分布不均,河川坡陡流急,水資源的使用效率不高。其他新興水源例如海岸水庫及地下水庫,將成為替代方案之一。若未來臺灣推動興建海岸水庫,則需選定適當場址,足夠的水源以及確保水庫的永續性相當重要,因此流量與輸砂變化趨勢的分析是必要參考的因素。本研究採用TCCIP提供之網格化觀測雨量以及AR6全球氣候模式降尺度資料中5個GCM模式之SSP2-4.5中間路線情境資料,以美國陸軍工兵團發展之HEC-HMS降雨逕流模式進行逕流量模擬,並且結合美國墾務局發展之SRH-2D水理輸砂模式進行河道輸砂量模擬,模擬分析二仁溪河口歷史基期30年(1992~2021年)以及未來世紀中(2046~2065年)和世紀末(2081~2100年)之逕流量和輸砂量。以Mann-Kendall趨勢分析與Theil-Sen斜率檢定計算基期30年之趨勢變化以及變化率,同時將1992-2021年作為基期,計算世紀中和世紀末逕流量與輸砂量的改變量,以評估氣候變遷的對逕流量和輸砂量的影響。
研究結果顯示,基期歷年平均日逕流量與輸砂量均為上升趨勢,上升速率分別為2.08萬立方公尺/日和6.35噸/日,在月季尺度中較顯著變化為8月份之逕流量與輸砂量,預計每年上升12.41萬立方公尺/日和47.49噸/日。在世紀中和世紀末年平均日逕流量預計將分別增加0.36%和5.73%,歷年平均日輸砂量預計將分別增加52.99%和72.31%,顯示輸砂量增加量較逕流量增加量更多。在豐水期,世紀中和世紀末平均日逕流量預計將增加1.34%和6.28%,平均日輸砂量預計增加60.22%和79.55%,在枯水期平均日逕流量將分別減少65.26%和32.00%,平均日輸砂量將分別減少34.89%和15.95%。
The water resources in Taiwan are limited for having steep slopes and uneven distributions of precipitation over space and time in river catchments. Therefore, the analyses of streamflow and sediment yields have become a crucial task to ensure the capacity and sustainability of reservoirs under the impact of climate change. In this study, we utilized the Rainfall-Runoff Model (HEC-HMS) developed by the U.S. Army Corps of Engineers to simulate the streamflow and the Sedimentation and River Hydraulics Model (SRH-2D) developed by the U.S. Bureau of Reclamation to simulate the sediment yields in Erren River for three periods of time, including the base period (1992~2021), the near-future period (2046~2065), and the far-future period (2081~2100). The Mann-Kendall trend test and Theil-Sen slope test were used to quantify the trends of daily streamflow and sediment yields. The results showed, in the base period, the annual average daily streamflow and sediment yields in Erren River have increased by 20,800 cubic meters and 7.09 metric tons per year, respectively. In the wet seasons, the streamflow have increased most significantly by 43,809 cubic meters per year. In the near-future and far-future periods, the annual average daily streamflow is expected to increase by 0.34% and 5.71%, while the annual average daily sediment yields are expected to increase by 52.99% and 72.31%, respectively. However, in the dry seasons, the annual average daily streamflow is expected to decrease by 11.42% and 1.14%, while the annual average daily sediment yields are expected to decrease by 34.89% and 15.95% in the near-future and far-future periods, respectively.
1.Al Qasimi, E., & Mahdi, T.-F. (2020). Rivers’ confluence morphological modeling using SRH-2D. Paper presented at the Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge: Proceedings of the 2nd International Workshop on Natural Hazards (NATHAZ'19), Pico Island—Azores 2019.
2.Arnold, J. (1994). SWAT-soil and water assessment tool.
3.Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological sciences journal, 24(1), 43-69.
4.Chang, H., & Jung, I.-W. (2010). Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology, 388(3-4), 186-207.
5.Charley, W. J. (1995). The hydrologic modeling system (HEC-HMS): Design and development issues: US Army Corps of Engineers, Hydrologic Engineering Center.
6.Chu, X., & Steinman, A. (2009). Event and continuous hydrologic modeling with HEC-HMS. Journal of Irrigation and Drainage Engineering, 135(1), 119-124.
7.Cunge, J. (1969). On the subject of a flood propagation computation method (Musklngum method). Journal of Hydraulic Research, 7(2), 205-230.
8.Deslauriers, S., & Mahdi, T.-F. (2018). Flood modelling improvement using automatic calibration of two dimensional river software SRH-2D. Natural hazards, 91, 697-715.
9.Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic procedia, 4, 1001-1007.
10.Doan, J. (2000). Geospatial hydrologic modeling extension HEC-GeoHMS. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Centre, Davis, CA.
11.Engineers, U. A. C. o. (2000). HEC-HMS technical reference manual: US Army Corps of Engineers Washington, DC, USA.
12.Feldman, A. D., Ely, P. B., & Goldman, D. M. (1981). The new HEC-1 flood hydrograph package: Hydrologic Engineering Center.
13.Greimann, B., Lai, Y., & Huang, J. (2008). Two-dimensional total sediment load model equations. Journal of Hydraulic Engineering, 134(8), 1142-1146.
14.Gumindoga, W., Rwasoka, D. T., Nhapi, I., & Dube, T. (2017). Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: Application of the HEC-HMS model. Physics and Chemistry of the Earth, Parts A/B/C, 100, 371-382.
15.Hansen, E., & Engelund, F. A. (1972). A monograph on sediment transport in alluvial streamsTeknish Forlag, Technical Press, Copenhagen, Denmark.
16.Hervouet, J.-M. (1999). TELEMAC, a hydroinformatic system. La houille blanche(3-4), 21-28.
17.Huang, C.-C., Chang, M.-J., Lin, G.-F., Wu, M.-C., & Wang, P.-H. (2021). Real-time forecasting of suspended sediment concentrations reservoirs by the optimal integration of multiple machine learning techniques. Journal of Hydrology: Regional Studies, 34, 100804.
18.Huang, J., & Greimann, B. (2007). User’s manual for SRH-1D V2. 0. B. o. RUS Department of the Interior, ed.
19.Kendall, M. (1975). Rank Correlation Methods, Charles Griffin, London (1975). Google Sch.
20.Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264-277.
21.Knebl, M., Yang, Z.-L., Hutchison, K., & Maidment, D. (2005). Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 75(4), 325-336.
22.Lai, Y.G. (2006). Theory and User Manual for SRH-W, version 1.1. Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, Denver, CO, 80225.
23.Lai, Y.G., & Gaeuman, D. (2020). SRH-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling. US Bureau of Reclamation: Washington, DC, USA, 179.
24.Lai, Y.G. (2008). SRH-2D version 2: Theory and User’s Manual. Sedimentation and River Hydraulics–Two-Dimensional River Flow Modeling, US Department of Interior, Bureau of Reclamation, November.
25.Lai, Y.G., & Wu, K. (2013). Modeling of vertical and lateral erosion on the Chosui River, Taiwan. World environmental and Water Resources congress 2013, 1747-1756.
26.Li,H., Yu, C., Qin, B., Li, Y., Jin, J., Luo, L., . . . Zhu, G. (2022). Modeling the Effects of Climate Change and Land Use/Land Cover Change on Sediment Yield in a Large Reservoir Basin in the East Asian Monsoonal Region. Water, 14(15), 2346.
27.Lo, W.-C., Su, H., & Shih, D.-S. (2022). Integrating multiple downscaling simulations with continuous In-situ monitoring to assess riverbed scouring. Journal of Hydrology, 610, 127841.
28.Mahmood, K., Vujica M. Yevjevich, and William Albert Miller. (1975). Unsteady flow in open channels. Water Resources Publications, 2.
29.Mann, H. (1945). Non-parametric test against trend. Econometrika 13, 245–259. Search in.
30.Maskey, S. (2022). Catchment Hydrological Modelling: The Science and Art: Elsevier.
31.Matsumoto, K., Takashi Takanezawa, and Masatsugu Ooe. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. Journal of oceanography, 56, 567-581.
32.Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. Paper presented at the IAHSR 2nd meeting, Stockholm, appendix 2.
33.Miller, W. A., and Jean A. Cunge. (1975). Simplified equations of unsteady flow. Unsteady flow in open channels, 1, 183-257.
34.Mockus, V. (1961). Watershed lag. U.S. Dept. of Agriculture, Soil Conservation Service, ES–1015, Washington, DC.
35.NASA Sea Level Change Team, IPCC AR6 Sea Level Projection Tool, URL: https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool
36.Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417-436.
37.Phillips, B. C., & Sutherland, A. J. (1989). Spatial lag effects in bed load sediment transport. Journal of Hydraulic Research, 27(1), 115-133.
38.Ponce, V. M., & Yevjevich, V. (1978). Muskingum-Cunge method with variable parameters. Journal of the Hydraulics Division, 104(12), 1663-1667.
39.Reichler, T., & Kim, J. (2008). How well do coupled models simulate today's climate? Bulletin of the American Meteorological Society, 89(3), 303-312.
40.Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. . Journal of the American statistical association, 63(324), , 1379-1389.
41.Teng, T.-Y., Liu, T.-M., Tung, Y.-S., & Cheng, K.-S. (2021). Converting Climate Change Gridded Daily Rainfall to Station Daily Rainfall—A Case Study at Zengwen Reservoir. Water, 13(11), 1516.
42.Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. Indagationes mathematicae, 12(85), 173.
43.Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate research, 47(1-2), 123-138.
44.Vieira, D. A., & Wu, W. (2002). One-Dimensional Channel Network Model CCHE1D Version 3.0: User's Manual. National Center for Computational Hydroscience and Engineering, University of Mississippi, Oxford, MS.
45.Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2), 120-128.
46.Wu, W. (2001). CCHE2D sediment transport model (version 2.1). National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS, USA.
47.Yang, S.-Q. (2013). Coastal Reservoir-The Trend Of Water Supply In New Era.
48.Zhang, S., Li, Z., Lin, X., & Zhang, C. (2019). Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water, 11(7), 1373.
49.江介倫、許駿騰、胡茵婷、吳若穎(2009),「地理資訊系統及 HEC-HMS 應用於中小集水區降雨逕流模擬」,坡地防災學報,第8卷,第2期,第29-44頁。
50.吳亭燁、李欣輯、陳永明(2017),「氣候變遷資料應用於土石流衝擊與土方量之推估」,中華水土保持學報,第48卷,第4期,第163-174頁。
51.李鴻源、楊錦釧、葉克家、楊志達、謝慧民(1996),「辮狀河系沖淤模式之發展」,中興工程顧問社專案研究報告。
52.李豐佐、黃茂松、劉政其、宋德仁、劉桂南、闕蓓德(2021),「應用二維數值模式分析攔河堰型式影響河道防洪及輸砂之研究」,農業工程學報, 第67卷,第2期,第32-43頁。
53.沈哲緯、劉時宏、陳毅青、邱昱嘉、劉格非(2016),「全臺流域集水區崩塌土砂收支研究與探討-以莫拉克颱風前後期間 (2008~ 2012 年)為例」,農業工程學報,第62卷,第3期,第23-42頁。
54.林旭信、陳立偉、甘秉玄(2012),「氣候變遷對水資源之衝擊評估-以牡丹水庫為例」,先進工程學刊,第7卷,第2期,第71-79頁。
55.邱永芳(2011),「橋墩沖刷計算模式之建立研究」,交通部運輸研究所。
56.國家災害防救科技中心,「全球災害事件簿」,網址:https://den.ncdr.nat.gov.tw/1132/1441/18983/
57.黃紹欽、李宗融、黃柏誠、吳宜昭、王安翔、于宜強(2022),「2021臺灣極端氣候與天氣事件回顧與分析」,國家災害防救科技中心。
58.經濟部水利署(2019),「出流管制計畫書與規劃書檢核基準及洪峰流量計算方法」。
59.經濟部水利署第六河川局(2012),「莫拉克風災後二仁溪河道淤積疏濬與防洪排淤計畫(2/2)」。
60.經濟部水利署第六河川局(2017),「二仁溪治理規劃檢討(2/2)」。
61.經濟部水利署水利規劃試驗所(2022),「氣候變遷對重要供水水系水源水量影響分析」。
62.臺灣氣候變遷推估資訊與調適知識平台計畫(2023),網格化觀測雨量V2版資料資料生產履歷。