| 研究生: |
蔡宗哲 Tsai, Tzung-Je |
|---|---|
| 論文名稱: |
以水熱法製備氧化鋅類單晶薄膜及其異質結構於紫外光檢測器之研製 Hydrothermal Growth of ZnO Nanocrystalline Film and Its Application on Heterojunction UV Light Detectors |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 氧化鋅 、水熱法 、異質結構 、紫外光檢測器 |
| 外文關鍵詞: | ZnO, HTG, heterojunction structure, UV light detector |
| 相關次數: | 點閱:99 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究主題係藉由水熱法(hydro-thermal growth, HTG)進行類單晶之氧化鋅薄膜之選擇性成長,以氧化鋅薄膜為基材搭配其它P型半導體材料(例如:氧化亞銅、氧化鎳),進而製備出異質接面結構之UV光感測器,本研究方法具有低溫低壓製程、製程時間短、元件製作成本低廉亦可避免傳統使用氧化鋅奈米線作為UV感測元件之絕緣製程(此製程技術複雜耗時,導致元件成本提高)、較大接面面積與較高之材料應力(與奈米結構比較)。本論文研究工作概分為三部份,第一部分為利用水熱法製程,於晶種層AZO表面進行出氧化鋅薄膜成長,並藉由XRD、TEM、穿透率量測及霍爾量測,證實此薄膜具有高結晶性、高穿透率低、高載子移動率及低電阻率之特性。第二部分將已製備氧化鋅薄膜之ITO玻璃基板表面,沉積p-Cu2O薄膜,進行HTG-ZnO/p-Cu2O異質接面結構的UV光感測器研製與光電特性分析。實驗結果顯示,擁有500 nm厚度p-Cu2O薄膜的異質結構UV光感測器可展現出高整流比之光電流特性,與利用濺鍍機沉積氧化鋅薄膜所製備之異質結構紫外光感測元件相較下,具有較佳的響應特性。此元件經過熱退火製程(氮氣下退火600oC)後,於UV光波長365 nm照射下有55.6倍(IUV/Idark)之響應,響應時間與回復時間分別為15秒及10秒,漏電流為0.06 uA/cm2 (Jr @-1 V)。第三部分係以與第二部份相同之製程進而製備出n-ZnO/p-NiO之異質結構UV光感測器,此元件在p-NiO厚度為500 nm時,具有最佳的光電流特性,與利用濺鍍機沉積氧化鋅薄膜所製備之異質結構紫外光感測元件相較下,亦具有較佳的響應特性。且此元件經過熱退火製程(氮氣下退火600oC)後,於UV光波長365 nm照射下有260.3倍(IUV/Idark)的響應,響應時間與回復時間分別是2.5秒及7秒,漏電流為0.19 uA/cm2 (Jr @ -1 V)。與n-ZnO/p-Cu2O異質結構UV光感測器相較下,ZnO/p-NiO異質結構UV光感測器擁有較佳響應特性、較短之響應時間及回復時間,此可能因氧化亞銅能隙寬度較窄(2.1 ev)以至量子效率較低(轉為熱能-歐傑效應),以及氧化亞銅之載子移動率較低所致。
本研究以HTG製備出具有高穿透率及良好結晶性之氧化鋅薄膜,並分別與p-NiO與p-Cu2O成功製備異質結構UV光偵測器元件,光電特性優異及快速響應能力,於UV光偵測器元件應用上具有潛力。
In this study, the use of a nanocrystalline ZnO film grown by hydrothermal growth (HTG) method for the fabrication of p-Cu2O/n-ZnO and p-NiO/n-ZnO heterojunction (HJ) ultraviolet photodetectors (UV-PDs) are proposed and demonstrated. The HJs were formed via radio frequency (rf) sputtering deposition (SD) of p-type Cu2O or NiO film onto the HTG ZnO film, which were subjected to thermal annealing in nitrogen ambient. Effect of the annealing temperature on the photoluminescence spectra of HTG-ZnO film was investigated. Comparisons between UV-PDs based on HTG and SD ZnO films were made. The measured current density-voltage (J-V) curves in darkness show that both the prepared p-Cu2O/n-ZnO and p-NiO/n-ZnO HJs have rectifying current-voltage characteristics. The optoelectronic properties of the two types HJs with Cu2O thickness in the range of 250-750 nm and NiO thickness in the range of 250-750 nm under UV (365 nm) light intensities (3 mW/cm2) were examined and discussed. Effect of thermal annealing on the sensing performance of the two types of HJs under UV (365 nm and 254 nm in wavelength and 3 mW/cm2 in power density) and visible light light irradiation (25 mW/cm2 in power density) were studied and discussed.
The p-Cu2O/n-ZnO and p-NiO/n-ZnO HJs possesses superior UV light (365 nm) sensitivity (about 55.6 and 260.3 times) and weaker visible light sensitivity (about 3.6 and 2.3 times) after thermal annealing at bias of -1 V.
[1]K. J. Chen, F. Y. Hung, S. J. Chang, and S. J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films,” J. Alloy. Compd., vol. 479, pp. 674-677, 2009.
[2]K. Liu, M. Sakurai, and M. Aono, “ZnO-Based Ultraviolet Photodetectors,” Sensors-basel, vol. 9. pp. 8604-8634, 2010.
[3]S. I. Inamdar and K. Y. Raipure, “High-performance metal-semiconductor-metal UV photodetector based on spray deposited ZnO tjin film,” J. Alloy. Compd., vol. 595, pp. 55-59, 2014.
[4]M. Z. Mohd Yusoff, A. Mahyuddin, Z. Hassan, H. Abu Hassan, M. J. Abdullah, M. Rusop, S. M. Mohammad, and Naser M. Ahmed, “AlN/GaN/AlN heterostructures grown on Si substrates by plasma-assisted MBE for MSM UV photodetector applications,” Mat. Sci. Semicon. Proc. vol.xxx, pp. xx-xx, 2014.
[5]Y. Xie, L. Wei, Q. Li, Y. Chen, S. Yan, J. Jiao, G. Liu, and L. Mei, “High-performance self-powered UV photodetectors based on TiO2 nano-branch arrays,” Nanotechnology, vol. 25, pp. 075202-1–075202-7, 2014.
[6]S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh, and I. C. Chen, “A ZnO nanowire-based humidity sensor,”Superlattice. Microst. vol. 47, pp. 772-778, 2010.
[7]F. S. Tsai, S. J. Wang, Y. C. Tu, Y. W. Hsu, C. Y. Kuo, Z. S. Lin, and R. M. Ko, “Preparation of p-SnO/n-ZnO Heterojunction Nanowire Arrays and Their Optpelectronic Characteristics under UV illumination,” Appl. Phys. Express, vol. 4, pp. 025002-1–0025002-3, 2011.
[8]F. S. Tsai and S. J. Wang, “Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheet,” Sensor. Actuat. B-Chem., vol. 193, pp. 280-287, 2014.
[9]D. An, Y. Li, X. Lian, Y. Zou, and G. Deng, “Synthesis of porous ZnO structure for gas sensor and photocatalytic applications,” Colloid. Surface. A., vol. 447, pp. 81-87, 2014.
[10]T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, Senior Member, IEEE, “ZnO-Nanorod-Based Ammonia Gas Sensors With Underlying Pt/Cr Interdigitated Electrodes,” IEEE Electron Dev. Lett., vol. 33, no. 10, pp. 1486-1488, 2012.
[11]P. Y. Yang, J. L. Wang, W. C. Tsai, S. J. Wang, J. C. Lin, I C. Lee, C. T. Chang, and H. C. Cheng, “Photoresponse of hydrothermally grown lateral ZnO nanowires,” Thin Solid Films vol. 518, pp.7328-7332, 2010.
[12]Y. B. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology, vol. 20, no. 4, pp. 045501-1–045501-5, 2009.
[13]L. Luo, Y. Zhang, S. Mao, and L. Lin, “Fabrication and characterization of ZnO nanowires based UV photodiodes,” Sensor Actuat A-phys, vol. 127, vol. 127, pp. 201-206, 2006.
[14]J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett., vol. 95, pp. 131117-1-131117-3, 2009.
[15]Klaus Wilhelm, “Past and recent observations of the solar upper atmosphere at vacuum-ultraviolet wavelengths,” Atmospheric and Solar-Terrestrial Physics, vol. 65, pp. 167-189, 2003.
[16]Zerihum Assefa, Maryan Garmyn, Roger Bouillon, “Differential Stimulation of ERK and JNK Activities by Ultraviolet B Irradiation and Epidermal Growth Factor in Human Keratinocytes,” Investigative Dermatology, vol. 108, pp.886-891, 1997.
[17]H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO,” Thin Solid Films, vol.445, pp. 317–321, 2003.
[18]L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, “Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection,” Appl. Phys. Lett., vol.88, pp.092103-1~092103-3, 2006.
[19]K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys., vol.101, pp.114508-1~114508-5, 2007.
[20]L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” Proc. SPIE, vol. 7603, pp.76031O-1–76031O-8, 2010.
[21]H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, K. Hane, and Y. Kashiwaba, “Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate,” Appl. Phys. Lett., vol.90, pp.121906-1–121906-3, 2007.
[22]D. C. Oh, T. Suzuki, T. Hanada, T. Yao, H. Makino, and H. J. Ko, “Photoresponsivity of ZnO Schottky barrier diodes,” J. Vac. Sci. Technol. B, vol.24, pp.1595-1598, 2006.
[23]M. Li, N. Chokshi, R. L. DeLeon, G. Tompa, and W. A. Anderson, “Radio frequency sputtered zinc oxide thin films with application to metal–semiconductor–metal photodetectors,”Thin Solid Films, vol.515, pp.7357–7363, 2007.
[24]S. J. Young, L. W. Ji, S. J. Chang, and Y. K. Su, “ZnO metal–semiconductor–metal ultraviolet sensors with various contact electrodes,” J. Cryst. Growth, vol.293, pp.43–47, 2006.
[25]X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett., vol. 4, pp.423-426, 2004.
[26] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D: Appl. Phys., vol.41, pp.1-5, 2008.
[27]Z. L. Wang, “Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology,” ACS NANO, Vol. 2, no.10, pp. 1987-1992, 2008
[28]Peardon’s Handbook of Crystallographic Data, 4795.
[29]Jing Li, SuntaoWu and Junyong Kang, “ZnO Films Deposited by RF Magnetron Sputtering,” IEEE, vol. 4, pp. 7803-8668, 2004.
[30]A. El-Shaer∗, A. Che Mofor, A. Bakin, M. Kreye, A. Waag, “High-quality ZnO layers grown by MBE on sapphire,” Superlattices and Microstructures, vol. 38, pp.265-271, 2005.
[31]E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, “High electron mobility of epitaxial ZnO thin films on c -plane sapphire grown by multistep pulsed-laser deposition,” Appl. Phys. Lett., vol. 82, pp. 3901, 2003.
[32]Baosheng Sang, Yoshinori Nagoya, Katsumi Kushiya, Osamu Yamase, “MOCVD-ZnO windows for 30 cm_30 cm CIGS-based modules,” Solar Energy Materials & Solar Cells., vol. 75, pp. 179–184, 2003.
[33]Baosheng SANG, Akira YAMADA and Makoto KONAGAI, “Highly Stable ZnO Thin Films by Atomic Layer Deposition,” Jpn. J. Appl. Phys., vol. 37, pp. 1125–1128, 1998.
[34]W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., Vol. 80, p. 4232, 2002
[35]K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., Vol. 78, no. 4, p. 475, 2000
[36]Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chen, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution-based growth,” Appl. Phys. Lett., Vol. 92, pp. 113505-1–113505-3, 2008
[37]Z. K. Tang, G. K. L. Wong, and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite films,” Appl. Phys. Lett., Vol. 72, p. 3270, 1998.
[38]Hiromichi Ohta, Masahiro Orita, and Masahiro Hirano, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO,” Journal of Applied Physics, Vol. 89, pp. 5720-5725, 2001.
[39]Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys Lett.,Vol. 85, pp. 3689-6391, 2004.
[40]R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, p. 89, 1964.
[41]Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, p. 3165, 2001.
[42]高正雄, “超LSI 時代- 電漿化學”, 復漢出版社, 台南市, 1999
[43]Y. M. Chiang, D. P. Birnie III, W. D. Kingery, “Physical ceramics”, John Wiley &Sons, p. 24, p. 105, p. 129, p. 131, 1997.
[44]施敏, “半導體元件物理學-第三版-上冊”, 國立交通大學出版社, 新竹市, 2011
[45]S. Ishizuka, K. Suzuki1, Y. Okamoto, M. Yanagita, “Polycrystalline n-ZnO/p-Cu2O heterojunctions grownby RF-magnetron sputtering,” phys. stat. sol., Vol. 4, p. 1067, 2004
[46]Shu-Yi Tsai , Min-Hsiung Hon , Yang-Ming Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electronics, Vol. 63, p. 37, 2011
[47]L.Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., Vol. 15, no. 5, p. 464, 2003.
[48]Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., Vol. 92, p. 113505, 2008.
[49]M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, Vol. 20, no. 15, p. 1293, 2008.
[50]K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide,” J. Non-Cryst. Solid, Vol. 210, no. 48, p. 48, 1997.
[51]Y.X. Zhang, G.H. Li , Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chemical Physics Letters, Vol. 365, pp. 300–304, 2002.
[52]S. Li, H. Zhang, Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, Vol. 15, pp. 1428–1432, 2004.
[53]L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc., Vol. 113(8), p. 2826, 1991.
[54]L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., Vol. 105(17), p. 3350, 2001.
[55]L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials., Vol. 13, no. 2, p. 233, 2001.
[56]L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., Vol. 15, no. 5, pp. 464-466, 2003.
[57]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., Vol. 124(44), pp. 12954-12955, 2002.
[58]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., Vol. 115, pp. 3139-3142, 2003.
[59]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., Vol. 17, p. 1001, 2005.
[60]K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., Vol. 14, p. 2575, 2004.
[61]Naisen Yu , Lifang Du, and Haiying Du , “Synthesis of ZnO film on P-GaN/Si(111) by one-step hydrothermal method,” Thin Solid Films., Vol. 550, p. 206, 2014.
[62]K. Govender, David S. Boyle, P. B. Kenway and P. O’Brien, "Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution", J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[63]R. W. Nosker and P. Mark, "Polar surfaces of wurtzite and zincblende lattices", Surf. Sci., vol. 19, pp. 291-317, 1970.
校內:2024-07-15公開