簡易檢索 / 詳目顯示

研究生: 劉心渝
Liu, Hsin-Yu
論文名稱: 單氧架橋雙鐵錯合物與晚期過渡金屬低配位錯合物的合成及反應性探討
Oxo-Bridged Diiron Complexes and Low-Coordinate Late Transition Metal Complexes : Synthesis and Reactivity Study
指導教授: 林峻毅
Lin, Chun-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 氧架橋混價反應性
外文關鍵詞: iron, oxo-bridged, mixed-valence, reactivity
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去文獻中,單氧架橋低配位的雙鐵錯合物非常稀少,本篇論文利用本實驗室過去發表的二配位鐵錯合物Fe{N(tBu)Dipp}2 (Dipp = 2,6-diisopropylphenyl)與氧化三甲胺反應,進行氧化得到單氧架橋三配位的雙鐵(III)錯合物,並且對其進行還原反應合成出另外兩種混價的雙鐵(II,III)錯合物。
    除此之外,我們也利用核磁共振光譜和紫外光-可見光光譜進行反應的追蹤以及一些動力學的探討,發現錯合物1非常不穩定,會在溶劑中自行失去一個配位基(-N(tBu)Dipp)轉變成錯合物2。我們研究這三種雙鐵錯合物氧原子轉移(Oxygen-Atom Transfer)和氫原子提取(Hydrogen-Atom Abstraction)的反應性,結果說明穩定的Fe-O-Fe結構導致皆無法進行氧原子轉移和氫原子提取的反應,但錯合物2二價鐵的位置仍具有反應性,容易與部分帶有未成對電子的有機分子進行鍵結,並得到四種不同的錯合物4、5、6和7。
    之後對這三種雙鐵錯合物利用超導量子化干涉儀 (SQUID) 進行變溫和變磁場的測定,以及電子順磁共振光譜 (EPR) 的測定,證實這三種錯合物為反鐵磁性,混價的雙鐵錯合物在低溫為高自旋的鐵 (S = 5/2) 和亞鐵 (S = 2)中心。

    We report the synthesis and characterization of oxo-bridging tricoordinate diiron (III) complex, as well as the reduction reactions leading to the formation of two mixed-valence diiron (II, III) complexes. Measurements using SQUID and EPR confirmed the antiferromagnetic exchange coupling properties of these three diiron complexes.
    Additionally, we observed that complex 1 lost one ligand to transfer into complex 2 in the solvent. The reactivity of these three diiron complexes towards oxygen atom transfer (OAT) and hydrogen atom abstraction (HAA) was studied. It was found that the divalent iron site in complex 2 retains its reactivity and readily forms bonds with organic molecules containing unpaired electrons.

    摘要 I 誌謝 VIII 目錄 X 圖目錄 XII 表目錄 XVIII 式目錄 XX 第一章 緒論 1 1.1 低配位過渡金屬錯合物 1 1.2 單氧架橋鐵錯合物 2 1.3 磷氧化和碳氫鍵活化反應 3 1.4 鐵亞胺基錯合物 4 1.5 研究動機及目的 5 第二章 結果與討論 7 2.1 錯合物[Fe{N(tBu)Dipp}2]2(μ-O) (1)之合成 7 2.2 錯合物[Fe{N(tBu)Dipp}2]2(μ-O) (1)之還原反應 10 2.3 兩種雙核鐵錯合物之關係 12 2.4 [Fe{N(tBu)Dipp}2](μ-O)[Fe{N(tBu)Dipp}] (2)之合成 22 2.5 [K(2.2.2)Crypt][Fe{N(tBu)Dipp}2]2(μ-O) (3)之合成 24 2.6 雙核鐵錯合物之反應性探討 28 2.7 鐵亞胺基錯合物 46 2.8 晚期雙配位錯合物之合成 49 2.9 結論 54 第三章 實驗步驟 56 3.1 實驗方法與鑑定儀器 56 3.2 [Fe{N(tBu)Dipp}2]2(μ-O) (1) 之合成 58 3.3 [Fe{N(tBu)Dipp}2](μ-O)[Fe{N(tBu)Dipp}] (2) 之合成 59 3.4 [K(2.2.2)Crypt][Fe{N(tBu)Dipp}2]2(μ-O) (3) 之合成 60 3.5 [Fe{N(tBu)Dipp}2](μ-O)[Fe{N(tBu)Dipp}(PMe3)] (4) 之合成 61 3.6 [Fe{N(tBu)Dipp}2](μ-O)[Fe{N(tBu)Dipp}(pyridine)2] (6) 之合成 62 3.7 Fe{N(tBu)Dipp}2(=NPh) (8) 之合成 63 3.8 Co{N(tBu)Dipp}2 (9) 之合成 64 3.9 Ni{N(tBu)Dipp}2 (10) 之合成 65 3.10 Cu{N(tBu)Dipp}2 (11) 之合成 66 第四章 實驗數據 67 4.1 NMR spectra 67 4.2 UV-Visible spectra 76 4.3 FT-IR spectra 81 4.4 X-Ray Data Collection, Structure Solution, and Refinement 84 4.5 Elemental Analysis Reports 95 第五章 參考文獻 104

    (1) Lipschutz, M. I.; Tilley, T. D. Synthesis and Reactivity of a Conveniently Prepared Two-Coordinate Bis(Amido) Nickel(Ii) Complex. Chem. Commun. 2012, 48 (57), 7146. https://doi.org/10.1039/c2cc32974c.
    (2) Ni, C.; Power, P. P. Insertion Reactions of a Two-Coordinate Iron Diaryl with Dioxygen and Carbon Monoxide. Chem. Commun. 2009, No. 37, 5543. https://doi.org/10.1039/b912312a.
    (3) Reiff, W. M.; LaPointe, A. M.; Witten, E. H. Virtual Free Ion Magnetism and the Absence of Jahn−Teller Distortion in a Linear Two-Coordinate Complex of High-Spin Iron(II). J. Am. Chem. Soc. 2004, 126 (33), 10206–10207. https://doi.org/10.1021/ja030632w.
    (4) Reiff, W. M.; Schulz, C. E.; Whangbo, M.-H.; Seo, J. I.; Lee, Y. S.; Potratz, G. R.; Spicer, C. W.; Girolami, G. S. Consequences of a Linear Two-Coordinate Geometry for the Orbital Magnetism and Jahn−Teller Distortion Behavior of the High Spin Iron(II) Complex Fe[N(t-Bu)2]2. J. Am. Chem. Soc. 2009, 131 (2), 404–405. https://doi.org/10.1021/ja806660f.
    (5) Bürger, H.; Wannagat, U. Silylamido-Verbindungen von Chrom, Mangan, Nickel und Kupfer. Monatshefte für Chemie 1964, 95 (4), 1099–1102. https://doi.org/10.1007/BF00904702.
    (6) Bürger, H.; Wannagat, U. Silylamido-Derivate von Eisen und Kobalt. Monatshefte für Chemie 1963, 94 (6), 1007–1012. https://doi.org/10.1007/BF00905688.
    (7) Bradle, D. C.; HURSTHOUSEa, B. The Structure of a Three-Co-Ordinate Iron( 11) Compound.
    (8) C2971000411b.Pdf. https://pubs.rsc.org/en/content/articlepdf/1971/c2/c2971000411b (accessed 2023-03-19).
    (9) PII: S0022-328X(00)87391-X | Elsevier Enhanced Reader. https://doi.org/10.1016/S0022-328X(00)87391-X.
    (10) Buttrus, N. H.; Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C. Preparation and Crystal Structure of a Two-Co-Ordinate Manganese Compound, Bis[Tris(Trimethyl)Silylmethyllmanganese.
    (11) LaPointe, A. M. Fe[C(SiMe3)3]2: Synthesis and Reactivity of a Monomeric Homoleptic Iron(II) Alkyl Complex. Inorganica Chimica Acta 2003, 345, 359–362. https://doi.org/10.1016/S0020-1693(02)01309-9.
    (12) RSC - Page load error. https://pubs.rsc.org/en/error/pageloaderror (accessed 2023-03-21).
    (13) Lin, C.-Y.; Guo, J.-D.; Fettinger, J. C.; Nagase, S.; Grandjean, F.; Long, G. J.; Chilton, N. F.; Power, P. P. Dispersion Force Stabilized Two-Coordinate Transition Metal–Amido Complexes of the −N(SiMe 3 )Dipp (Dipp = C 6 H 3 -2,6-Pr i 2 ) Ligand: Structural, Spectroscopic, Magnetic, and Computational Studies. Inorg. Chem. 2013, 52 (23), 13584–13593. https://doi.org/10.1021/ic402105m.
    (14) Johnson, E. J.; Kleinlein, C.; Musgrave, R. A.; Betley, T. A. Diiron Oxo Reactivity in a Weak-Field Environment. Chem. Sci. 2019, 10 (25), 6304–6310. https://doi.org/10.1039/C9SC00605B.
    (15) Miller, K. R.; Biswas, S.; Jasniewski, A.; Follmer, A. H.; Biswas, A.; Albert, T.; Sabuncu, S.; Bominaar, E. L.; Hendrich, M. P.; Moënne-Loccoz, P.; Borovik, A. S. Artificial Metalloproteins with Dinuclear Iron–Hydroxido Centers. J. Am. Chem. Soc. 2021, 143 (5), 2384–2393. https://doi.org/10.1021/jacs.0c12564.
    (16) Weitz, A. C.; Giri, N.; Caranto, J. D.; Kurtz, D. M. Jr.; Bominaar, E. L.; Hendrich, M. P. Spectroscopy and DFT Calculations of a Flavo-Diiron Enzyme Implicate New Diiron Site Structures. J. Am. Chem. Soc. 2017, 139 (34), 12009–12019. https://doi.org/10.1021/jacs.7b06546.
    (17) Wallar, B. J.; Lipscomb, J. D. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem. Rev. 1996, 96 (7), 2625–2658. https://doi.org/10.1021/cr9500489.
    (18) Tshuva, E. Y.; Lippard, S. J. Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. Chem. Rev. 2004, 104 (2), 987–1012. https://doi.org/10.1021/cr020622y.
    (19) doi:10.1016/S0010-8545(00)80384-7 | Elsevier Enhanced Reader. https://doi.org/10.1016/S0010-8545(00)80384-7.
    (20) Kurtz, D. M. Oxo- and Hydroxo-Bridged Diiron Complexes: A Chemical Perspective on a Biological Unit. Chem. Rev. 1990, 90 (4), 585–606. https://doi.org/10.1021/cr00102a002.
    (21) Sun, X.-X.; Du, J.; Tan, J.-J.; Zhan, S.-Z. A Mono-Oxo-Bridged Binuclear Iron( III ) Complex with a Fe–O–Fe Angle of 180.0° and Its Catalytic Activity for Hydrogen Evolution. New J. Chem. 2022, 46 (8), 3794–3799. https://doi.org/10.1039/D1NJ05904A.
    (22) Payne, S. C.; Hagen, K. S. Steric Control of Reactivity of Non-Heme μ-Hydroxo Diiron(II) Complexes with Oxygen: Isolation of a Strongly Coupled μ-Oxo Fe(II)Fe(III) Dimer. J. Am. Chem. Soc. 2000, 122 (27), 6399–6410. https://doi.org/10.1021/ja991885l.
    (23) Li, F.; Chakrabarti, M.; Dong, Y.; Kauffmann, K.; Bominaar, E. L.; Münck, E.; Que, L. Structural, EPR, and Mössbauer Characterization of (μ-Alkoxo)(μ-Carboxylato)Diiron(II,III) Model Complexes for the Active Sites of Mixed-Valent Diiron Enzymes. Inorg. Chem. 2012, 51 (5), 2917–2929. https://doi.org/10.1021/ic2021726.
    (24) Eckert, N. A.; Stoian, S.; Smith, J. M.; Bominaar, E. L.; Münck, E.; Holland, P. L. Synthesis, Structure, and Spectroscopy of an Oxodiiron(II) Complex. J. Am. Chem. Soc. 2005, 127 (26), 9344–9345. https://doi.org/10.1021/ja0436704.
    (25) Walleck, S.; Zimmermann, T. P.; Hachmeister, H.; Pilger, C.; Huser, T.; Katz, S.; Hildebrandt, P.; Stammler, A.; Bögge, H.; Bill, E.; Glaser, T. Generation of a μ-1,2-Hydroperoxo FeIIIFeIII and a μ-1,2-Peroxo FeIVFeIII Complex. Nat Commun 2022, 13 (1), 1376. https://doi.org/10.1038/s41467-022-28894-5.
    (26) Singh, R.; Ganguly, G.; Malinkin, S. O.; Demeshko, S.; Meyer, F.; Nordlander, E.; Paine, T. K. A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C–H Bond Cleavage Reactivity. Inorg. Chem. 2019, 58 (3), 1862–1876. https://doi.org/10.1021/acs.inorgchem.8b02577.
    (27) Peterson, M. W.; Richman, R. M. Photodisproportionation of (.Mu.-Oxo)Bis((Tetrakis(4-Carboxyphenyl)Porphinato)Iron(III). Inorg. Chem. 1985, 24 (5), 722–725. https://doi.org/10.1021/ic00199a018.
    (28) Berry, J. F. Terminal Nitrido and Imido Complexes of the Late Transition Metals. Comments on Inorganic Chemistry 2009, 30 (1–2), 28–66. https://doi.org/10.1080/02603590902768875.
    (29) Che, C.-M.; Zhou, C.-Y.; Wong, E. L.-M. Catalysis by Fe=X Complexes (X = NR, CR2). In Iron Catalysis; Plietker, B., Ed.; Topics in Organometallic Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; Vol. 33, pp 111–138. https://doi.org/10.1007/978-3-642-14670-1_4.
    (30) Iron-catalyzed C-H amination and its application in organic synthesis | Elsevier Enhanced Reader. https://doi.org/10.1016/j.tet.2019.130607.
    (31) Yang, P.-C.; Yu, K.-P.; Hsieh, C.-T.; Zou, J.; Fang, C.-T.; Liu, H.-K.; Pao, C.-W.; Deng, L.; Cheng, M.-J.; Lin, C.-Y. Stabilization of a High-Spin Three-Coordinate Fe(III) Imidyl Complex by Radical Delocalization. Chem. Sci. 2022, 13 (33), 9637–9643. https://doi.org/10.1039/D2SC02699F.
    (32) Reith, S.; Demeshko, S.; Battistella, B.; Reckziegel, A.; Schneider, C.; Stoy, A.; Lichtenberg, C.; Meyer, F.; Munz, D.; Werncke, C. G. Between Imide, Imidyl and Nitrene – an Imido Iron Complex in Two Oxidation States. Chem. Sci. 2022, 13 (26), 7907–7913. https://doi.org/10.1039/D2SC01088G.
    (33) Groves, J. T. Models and Mechanisms of Cytochrome P450 Action. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P. R., Ed.; Springer US: Boston, MA, 2005; pp 1–43. https://doi.org/10.1007/0-387-27447-2_1.
    (34) Pilz, M. F.; Limberg, C.; Demeshko, S.; Meyer, F.; Ziemer, B. Dinuclear Iron Complexes Based on Parallel β-Diiminato Binding Sites: Syntheses, Structures and Reaction with O2. Dalton Trans. 2008, No. 14, 1917–1923. https://doi.org/10.1039/B715376G.
    (35) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, No. 21, 2832. https://doi.org/10.1039/b801115j.
    (36) Lawson, H. J.; Atwood, J. D. Iridium Dioxygen Complexes in the Oxidation of Substrates: Kinetics, Mechanism, and Steric and Electronic Effects in the Oxidation of Carbon Monoxide, Carbon Dioxide, Triphenylphosphine, and Sulfur Dioxide by RIr(O2)(CO)L2 (R = Methyl, Phenyl, Neopentyl; L = Tri-p-Tolylphosphine, Triphenylphosphine, Methyldiphenylphosphine, Tri-p-Anisylphosphine). J. Am. Chem. Soc. 1989, 111 (16), 6223–6227. https://doi.org/10.1021/ja00198a037.
    (37) Müller, T. E.; Green, J. C.; Mingos, D. M. P.; McPartlin, C. M.; Whittingham, C.; Williams, D. J.; Woodroffe, T. M. Complexes of Gold(I) and Platinum(II) with Polyaromatic Phosphine Ligands1Dedicated to Professor Peter Maitlis on the Occasion of His 65th Birthday.1. Journal of Organometallic Chemistry 1998, 551 (1), 313–330. https://doi.org/10.1016/S0022-328X(97)00522-6.
    (38) Woźniak, L. A.; Stec, W. J. Oxidation in Organophosphorus Chemistry: Potassium Peroxymonosulphate. Tetrahedron Letters 1999, 40 (13), 2637–2640. https://doi.org/10.1016/S0040-4039(99)00261-0.
    (39) Sridharan, A.; Brown, A. C.; Suess, D. L. M. A Terminal Imido Complex of an Iron–Sulfur Cluster. Angewandte Chemie International Edition 2021, 60 (23), 12802–12806. https://doi.org/10.1002/anie.202102603.
    (40) Sengupta, D.; Sandoval-Pauker, C.; Schueller, E.; Encerrado-Manriquez, A. M.; Metta-Magaña, A.; Lee, W.-Y.; Seshadri, R.; Pinter, B.; Fortier, S. Isolation of a Bimetallic Cobalt(III) Nitride and Examination of Its Hydrogen Atom Abstraction Chemistry and Reactivity toward H 2. J. Am. Chem. Soc. 2020, 142 (18), 8233–8242. https://doi.org/10.1021/jacs.0c00291.
    (41) Bryan, A. M.; Merrill, W. A.; Reiff, W. M.; Fettinger, J. C.; Power, P. P. Synthesis, Structural, and Magnetic Characterization of Linear and Bent Geometry Cobalt(II) and Nickel(II) Amido Complexes: Evidence of Very Large Spin–Orbit Coupling Effects in Rigorously Linear Coordinated Co 2+. Inorg. Chem. 2012, 51 (6), 3366–3373. https://doi.org/10.1021/ic2012414.
    (42) Li, J.; Song, H.; Cui, C.; Cheng, J.-P. Synthesis and Characterization of Linear and Square-Planar Nickel Complexes with Primary Amido Ligands. Inorg. Chem. 2008, 47 (9), 3468–3470. https://doi.org/10.1021/ic800288x.
    (43) Wagner, C. L.; Tao, L.; Thompson, E. J.; Stich, T. A.; Guo, J.; Fettinger, J. C.; Berben, L. A.; Britt, R. D.; Nagase, S.; Power, P. P. Dispersion-Force-Assisted Disproportionation: A Stable Two-Coordinate Copper(II) Complex. Angewandte Chemie International Edition 2016, 55 (35), 10444–10447. https://doi.org/10.1002/anie.201605061.
    (44) Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-Coupled Polynuclear d- and f-Block Complexes. Journal of Computational Chemistry 2013, 34 (13), 1164–1175. https://doi.org/10.1002/jcc.23234.

    無法下載圖示 校內:2028-08-09公開
    校外:2028-08-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE