| 研究生: |
張安伶 Chang, An-Ling |
|---|---|
| 論文名稱: |
油品成分對機車引擎排放氣態污染物影響研究 Effects of Fuel Formulation on Exhaust Emissions from Motorcycle |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 引擎動力計 、機車 、汽油成份 、揮發性有機物 、基準污染物 |
| 外文關鍵詞: | VOC, exhaust emission, air toxic, motorcycle, gasoline composition, engine dynamometer |
| 相關次數: | 點閱:148 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討汽油油品成份與機車引擎排氣基準污染物(CO、CO2、NO、THC)及揮發性有害空氣污染物(1,3butadiene、n-Hexane、Benzene、Toluene、Ethylbenzene、Xylene、Styrene、Formaldehyde、Acetaldehyde、Acrolein)所致影響。排放測試實驗乃以四行程125cc機車引擎新品為對象,於引擎動力計藉由控制機車引擎轉速,模擬操作冷啟動惰轉條件測試程序乃添加不同油品成份(氧含量、硫含量、芳香烴及苯含量)為燃料,藉由連續自動監測分析儀即時量測尾氣排放基準污染物濃度,以Tedlar採樣袋和醛酮吸附管(Cartridge)進行採樣,利用GC/MS及HPLC定性定量揮發性有機物及醛酮化合物成分及濃度。實驗設計乃以四種油品成分二水準(24=16)實驗設計方法進行,並以市售95無鉛汽油與測試油品實驗結果比較,探討不同成份汽油所致機車引擎污染物排放係數(g/L-fuel),並探討不同成分對不同空氣污染物排放之影響,油品成分為氧含量3.3wt%->2.5wt%;硫含量150ppmw->50ppmw;芳香烴含量28vol%->22vol%;苯含量0.63vol%->0.43vol%。
研究結果顯示,市售汽油為燃料之空氣污染物排放係數,大多高於研究配製汽油所致排放係數(CO、NO、THC、1,3butadiene、n-Hexane、Benzene、Toluene、Ethylbenzene、Xylene、Styrene)。於油品成份影響上,降低汽油含硫量(由150 ppmw降低至50 ppmw)對THC、NO、1,3butadiene(且有顯著減量比例)、n-Hexane、Ethylbenzene、Xylene、Styrene排放亦有減量效果,對CO及CO2則無明顯影響,對Toluene發現有增加的趨勢;降低油品含氧量(由3.3 wt%降低至2.5 wt%)使CO、1,3butadiene(顯著)、Acetaldehyde排放增加;對n-Hexane、Toluene、Ethylbenzene、Styrene有減量之效果,對於其他污染物則不明顯。降低油品中芳香烴含量(由28%降至22%)使CO、Benzene(顯著)排放減少,對Toluene、Ethylbenzene、Xylene、Styrene、Formaldehyde亦有減量效果,唯可將Acetaldehyde(顯著)及Acrolein排放量增加;降低汽油含苯量目標物種排放係數影響不明顯,應與測試油品苯含量極低 (0.4%~0.6%)有關。
此外機車引擎於冷啟動惰轉情況下,機車尾氣排放之各族NMHC成分比例為烷烴(57%~35%)>烯烴(44%~18%)>芳香烴(32%~8%)>醛酮化合物(35%~1.7%)。不同油品造成NMHC族群比例差異極大;氧含量越多,烯烴類排放係數越小(顯著);芳香烴含量越多,烷烴及醛酮化合物排放係數有減少趨勢(中度負相關,不顯著)。
以等效減量值加權計算發現降低硫含量能有效減少基準污染物排放量;以降低致癌性為主要考量則應減少硫含量及苯含量;以油品改良方式減少危害性則以降低硫含量為主。整體而言,欲對油品成分改良以促使機車引擎尾氣污染物排放減量,首先著手減量芳香烴含量及硫含量,減少油品中的此二種成分可以減少最多種的有害污染物,但仍須注意減少這些成分會增加排放的污染物(減少芳香烴有使NO增加之趨勢;減少硫含量有使甲苯增加之趨勢)。
Exhaust from motorcycle strongly depends on engine type and fuel formulation. This research has been conducted to investigate the effects of gasoline composition on the profiles of exhaust gas, including legislated exhaust emissions (CO, THC, NO, and CO2) and air toxics (1,3butadiene, n-Hexane, benzene, toluene, ethylbenzene, xylene, styrene, formaldehyde, acetaldehyde, and acrolein) from a motorcycle engine dynamometer. The test fuel designed to 4 characters (oxygenate content, sulfur, aromatic, and benzene) with 2 level (hight and low level) is 16 different type (24=16). The fuel content on oxygenate molecule is from 3.3 to 2.5 wt%, sulfur from 50 to 150 ppmw, aromatics from 22 to 28 vol%, and benzene from 0.63 to 0.43 vol%. All blended gasolines were used to power a 4-stoke with 125cc displacement engine which was linked to an engine dynamometer and tested under idleing test mode with cold-start. The legislated exhaust emissions, carbon monoxide, hydrocarbon, and nitrogen oxides, were measured by monitor (SPTC AUTOCHEK 4/5 and EGA300). The volatile organic compounds (VOCs) and carbonyls compounds were sampled by sampling bags and DNPH-Cartridge, and were analyzed by GC/MS and HPLC, respectively.
The test results indicated that commercial 95 RON unleaded gasoline caused the hightest exhaust emission factor among test fuels, for CO, NO, THC, 1,3butadiene, n-Hexane, benzene, toluene、ethylbenzene, xylene, and styrene. Test data shows that the THC, NO, 1,3-butadiene (significant), n-Hexane, ethylbenzene, xylene, and styrene emissions increase as sulfur content in fuel raises from 50 to 150ppmw, but CO and CO2 emission had no clear effect with sulfur content. Gasoline with lower aromatics content also caused lower emission of CO, benzene (significant), toluene, ethylbenzene, xylene, styrene, formaldehyde, but caused higher NO, acetaldehyde (significant), and acrolein. The content of benzene has no significant effect in all emissions because of the test fuel with low extremely benzene content (0.4%~0.6%).
The fraction of NMHC groups exhaust from motorcycle engine in order are alkanes (57%~35%), alkenes (44~18%), aromatics (32%~8%) and carbonyls (35%~1.7%). Different gasoline composition cause significant NMHC composition proportion. Gasoline with higher oxygenate cause lower alkenes emission factor (significant), and gasoline with higher aromatics also cause lower alkanes and carbonyls (non significant).
Moreover, decrease the sulfur content in gasoline has the greatest emission reduction for legislated exhaust emissions evaluated by equivalent emission abatement (EEA). For air toxics exhaust emissions, decrease the sulfur and benzene content in gasoline has the greatest carcinogenic risk reduction and decrease the sulfur content in gasoline may decreased the noncancer chronic healthy hazard.
By the domination of gasoline to control air pollution for motorcycle, the first stage should be reducing the aromatics and sulfur content, because they can cause the most kind of air pollutants emission reduction. But we still pay some attention to it may cause some air pollutants increase, that is to reduce aromatics content in fuel may increase NO emission, and to reduce sulfur content may increase toluene emission.
Bruehlmann, S., A. M. Forss, et al. (2005). "Benzene: A secondary pollutant formed in the three-way catalyst." Environmental Science & Technology 39(1): 331-338.
Goodfellow, C. L., G., R. A. Hawkins, M. J. and McArragher, J. S. (1996). "European Programme on Emissions, Fuels and Engine Thchnologies (EPEFE) - Gasoline Aromatics/E100 Study." SAE961072.
California Air Resources Board Report, 1990, “Gasoline Program, Phase 1 Reformulated Gasoline, Chapter 1 - Introduction and Summary”.
California Air Resources Board Staff Report, 1991, “Gasoline Program, Phase 2 Reformulated Gasoline, Chapter 1 - Introduction and Summary”.
California Air Resources Board Staff Report, 1999, “Proposed California Phase 3 Reformulated Gasoline Regulations”.
California Air Resources Board, 2003.05, “The California Reformulated Gasoline Regulations, Title 13, California Code of Regulations, Sections 2250-2273.5, CaRFG3 Regulations”.
CONCAWE , 2004, “Fuel Effects on Emissions from Modern Gasoline Vehicles Part 2 - aromatics, olefins and volatility effects”, Report No. 2/04
CONCAWE, 1999, “Fuel Quality, Vehicle Technology and Their Interactions”, Report No. 99/55
CONCAWE, 2001, “Motor Vehicle Emission Regulations and Fuel Specifications – Part 1 Summary and annual 1999/2000 update “, Report No. 1/01
CONCAWE, 2001, “Motor Vehicle Emission Regulations and Fuel Specifications – Part 2 Detailed Information and Historic Review (1996-2000)”, Report No. 2/01.
Lowenthal, D. H.(1994)“Characterization of heavy-duty diesel vehicle emissions”, Atmospheric Environment, 28:731-743.
Calabrese, E. J. Elaina M. Kenyon, Air Toxics and Risk Assessment, p145-149, (1991)
Egolfopoulos, F. N., D. X. Du, et al. (1992). "A Comprehensive Study of Methanol Kinetics in Freely-Propagating and Burner-Stabilized Flames, Flow and Static Reactors, and Shock-Tubes." Combustion Science and Technology 83(1-3): 33-75.
European Commission, 2003, “European Parliament and Council Directive 2003/17/EC”.
Abd Alla, G.H. H.A. Soliman, O.A. Badr, M.F. Abd Rabbo, 2000. “Effect of pilot fuel quantity on the performance of a dual fuel engine”, Energy Conversion & Management, 559-572.
Gertler, A. W., J. C. Sagebiel, et al. (1999). "The impact of California Phase 2 Reformulated Gasoline on real-world vehicle emissions." Journal of the Air & Waste Management Association 49(11): 1339-1346.
Glaude, P. A., F. Battin-Leclerc, et al. (2000). "Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers." Combustion and Flame 121(1-2): 345-355.
Heeb, N. V., A. M. Forss, et al. (2002). "Pre- and post-catalyst-, fuel-, velocity- and acceleration-dependent benzene emission data of gasoline-driven EURO-2 passenger cars and light duty vehicles." Atmospheric Environment 36(30): 4745-4756.
Henein, N. A. and M.K. Tagomri (1999). “Cold-start hydrocarbon emissions in port-injected gasoline engines.” Progress in Energy and Combustion Science 25(6): 563-593.
Hochhauser, A. M. (1991).“The Effect of Aromatics, Mtbe, Olefins, and TD9D0 on Mass Exhaust Emissions From Current and Older Vehicles.” SAE912322.
Hoekman, S. K. (1992). "Speciated Measurements and Calculated Reactivities of Vehicle Exhaust Emissions from Conventional and Reformulated Gasolines." Environmental Science & Technology 26(6): 1206-1216.
Rutherford, J. A. (1995). “Effects of Gasoline Properties on Emissions of Current and Future Vehicles--TD5D0, TD9D0, and Sulfur--Auto/Oil Air Quality Improvement Research Program.” SAE952510.
Tsai, J. H., H.L. Chiang, Y.C. Hsu, H.C. Weng and C.Y. Yang. (2003). “The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different driving modes.” Atmospheric Environment, 37: 2485–2496.
Tsai, J. H., Y. C. Hsu, H. C. Weng, W. Y. Lin and F. T. Jeng. (2000). “Air pollutant emission factors from new and in-use motorcycles.” Atmospheric Environment, 34: 4747-4754.
John B. Hywood, (1989).Internal Combustion Engine Fundamentals, Chapter 11:Pollutant Formation and Control.
John K. Pearson, (2001). Improving Air Quality, Progress and Challenges for the Auto Industry. Society of Automotive Engineers, ISBN 0-7680-0236-2
Kaiser, E. W., W. O. Siegl, et al. (1992). "Effect of Fuel Structure on Emissions from a Spark-Ignited Engine .2. Naphthene and Aromatic Fuels." Environmental Science & Technology 26(8): 1581-1586.
Kaiser, E. W., W. O. Siegl, et al. (1991). "Effect of Fuel Structure on Emissions from a Spark-Ignited Engine." Environmental Science & Technology 25(12): 2005-2012.
Kean, A. J., E. Grosjean, et al. (2001). "On-road measurement of carbonyls in California light-duty vehicle emissions." Environmental Science & Technology 35(21): 4198-4204.
Kieiichi Koseki, T. U. (2000)."Masanobu Kawamura and Shigeo Sembokuya. A Study on the Effects of Sulfur in Gasoline on Exhaust Emissions." SAE2000-01-1878.
Kirchstetter, T. W., B. C. Singer, et al. (1996). "Impact of oxygenated gasoline use on California light-duty vehicle emissions." Environmental Science & Technology 30(2): 661-670.
Kirchstetter, T. W., B. C. Singer, et al. (1999). "Impact of California reformulated gasoline on motor vehicle emissions. I. Mass emission rates." Environmental Science & Technology 33(2): 318-328.
Kirchstetter, T. W., B. C. Singer, et al. (1999). "Impact of California reformulated gasoline on motor vehicle emissions. 2. Volatile organic compound speciation and reactivity." Environmental Science & Technology 33(2): 329-336.
LeJeune, A., C. R. M., and Lee, G. R. (1994). "NOx/Aromatics Effects in Catalyst Equipped Gasoline Vehicles." SAE9418169.
Lemaire, O., M. Ribaucour, et al. (2001). "The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene." Combustion and Flame 127(1-2): 1971-1980.
Lindhjem, C. E. (2001). "The Effect of Gasoline Reformulation and Sulfur Reduction on Exhaust Emissions from Post-1983 but Pre-1990 Vehicles." SAE950778.
McDonald J.D. et al. (2002). “Characterization of Fine Particle Material in Ambient Air and Personal Samples from an Underground Mine.” Aerosol Sci. Technol 36:1033-1044.
McDonald J.D. et al. (2000). “Fine Particle and Gaseous Emission Rates from Residential Wood Combustion.”, Environmental Science & Technology 34:2080-2091.
Osman, M. M. (1996). "The effect of gasoline fuel type on Si engine nitrogen-oxides and carbon monoxide emissions under part-load operating conditions." Fuel Science & Technology International 14(8): 1065-1095.
Perry, R. and I. L. Gee (1995). "Vehicle Emissions in Relation to Fuel Composition." Science of the Total Environment 169(1-3): 149-156.
Poulopoulos, S. G. and C. J. Philippopoulos (2003). "The effect of adding oxygenated compounds to gasoline on automotive exhaust emissions." Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 125(1): 344-350.
MacKinven, R., M. Hublin. (1996). "European Programme on Emissions, Fuels and Engine Technologies - Objectives and Design. " SAE961065.
Schauer, J. J., M. J. Kleeman, et al. (2002). "Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles." Environmental Science & Technology 36(6): 1169-1180.
Schifter, I., L. Diaz, et al. (2004). "Trends of exhaust emissions from gasoline motor vehicles in the metropolitan area of Mexico city." International Journal of Environment and Pollution 21(2): 166-174.
Schifter, I., L. Diaz, et al. (2003). "Remote sensing study of emissions from motor vehicles in the metropolitan area of Mexico City." Environmental Science & Technology 37(2): 395-401.
Schifter, I., L. Diaz, et al. (2003). "Impact of sulfur-in-gasoline on motor vehicle emissions in the metropolitan area of Mexico City." Fuel 82(13): 1605-1612.
Schifter, I., L. Diaz, et al. (2004). "Fuel formulation and vehicle exhaust emissions in Mexico." Fuel 83(14-15): 2065-2074.
Schuetzle, D., W. O. Siegl, et al. (1994). "The Relationship between Gasoline Composition and Vehicle Hydrocarbon Emissions - a Review of Current Studies and Future-Research Needs." Environmental Health Perspectives 102: 3-12.
Speight G. James, The Chemistry and technology of Petroleum, 2nd Ed., pp.691(1991)
USEPA網頁資料a, “Fuels and Fuel Additives ”, http://www.epa.gov/otaq/fuels.htm
USEPA網頁資料b, “Mobile Source Air Toxics “, http://www.epa.gov/otaq/toxics.htm, EPA420-R-00-023
USEPA網頁資料c, “Reformulated Gasoline - Regulations & Standards ”, http://www.epa.gov/otaq/rfg_regs.htm
USEPA網頁資料d, “Fuel Sulfur Effects on Exhaust Emissions “, http://www.epa.gov/otaq/models/mobile6/m6ful001.pdf, EPA420-P-99-008
World-Wide Fuel Charter, December 2002, http://www.oica.net/htdocs/fuel%20quality/WWFC_Dec2002_Brochure.pdf
Vishnetskaya, M. V., R. A. Gazarov, et al. (2005). "Reducing the toxicity of automotive gasolines." Chemistry and Technology of Fuels and Oils 41(6): 491-495.
William J. Koehl, J. D. B., Vaughn R. Burns, Robert A. Gorse, Jr. , and Albert M. Hochhauser (1993). "Effects of Gasoline Sulfur Level on Exhaust Mass and Speciated Emissions: the Question of Linearity - Auto/Oil Air Quality Improvement Program." SAE932727.
Winebrake, J. J., M. Q. Wang, et al. (2001). "Toxic emissions from mobile sources: A total fuel-cycle analysis for conventional and alternative fuel vehicles." Journal of the Air & Waste Management Association 51(7): 1073-1086.
Y. Zvirin, L. Tartakovsky, B. Aronov, M. Veinblat , M. Gutman, 2004. “Fuel Influence on Heavy-duty Vehicles Emissions”, Transportation Research Institute and Faculty of Mechanical Engineering.
Yasunori Takei, T. U., Hirohiko Hoshi, Shinichi Sugiyama, and Masanori Okada (1995). "Effects of California Phase 2 Reformulated Gasoline Regulations on Exhaust Emission Reduction: Part 2. " SAE952502.
Zervas, E. (2005). "Comparative study of some experimental methods to characterize the combustion process in a SI engine." Energy 30(10): 1803-1816.
Zervas, E., X. Montagne, et al. (1999). "The influence of gasoline formulation on specific pollutant emissions." Journal of the Air & Waste Management Association 49(11): 1304-1314.
Zervas, E., X. Montagne, et al. (2001). "C-1-C-5 organic acid emissions from an SI engine: Influence of fuel and air/fuel equivalence ratio." Environmental Science & Technology 35(13): 2746-2751.
Zervas, E., X. Montagne, et al. (2002). "Emission of alcohols and carbonyl compounds from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio." Environmental Science & Technology 36(11): 2414-2421.
Zervas, E., X. Montagne, et al. (2003). "Emissions of regulated pollutants from a spark ignition engine. Influence of fuel and Air/Fuel equivalence ratio." Environmental Science & Technology 37(14): 3232-3238.
Zervas, E., X. Montagne, et al. (2004). "Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 1. Experimental findings." Fuel 83(17-18): 2301-2311.
Zervas, E., X. Montagne, et al. (2004). "Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 2. Formation pathways and modelling of combustion processes." Fuel 83(17-18): 2313-2321.
王建鴻,1999,”乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究”,國立成功大學環境工程學系碩士論文
台塑石化網頁資料,”台塑石化知識百科-油的知識”,http://www.fpcc.com.tw/knowledge/knowledge_01.asp
交通部統計處,2005.06,交通統計月報
交通部統計處資料-機動車輛數,2004
交通銀行,2004.10,”機車工業”,交通銀行產業調查與技術季刊(150).
行政院環保署,”空保處網頁資料-移動源管制油品改善”,http://www.epa.gov.tw/
行政院環保署,”低污染噴射引擎機車宣導網頁”,http://www.iqtop.com.tw/epa/html/epa04.htm
行政院環保署環保法規網站資料, 2004.12, “空氣污染防制,車用汽柴油成分及性能管制標準”
交通部統計處,1995,”台灣地區老舊車輛使用狀況調查報告”
氣候變化綱要公約全球資訊網,”聯合國氣候變化綱要公約-國家通訊”,http://sd.erl.itri.org.tw/fccc/ch/nc/nc.htm
環保署委託研究計畫期末報告,1999a,”研擬機器腳踏車冷車行車型態排氣污染測試方法及程序”
環保署委託研究計畫期末報告,1999b,”汽機車回收改正調查測試計畫”,EPA-88-FA33-03-3082
環保署/國科會空污防制科研合作計畫期末報告, 2005,”子計畫二:油品成分對機車引擎排放氣態污染物影響研究”, NSC 94-EPA-Z-006-006
環保署環境檢驗所研究計畫期末報告, 2005,”空氣中揮發性有機化合物檢測干擾之研究(二)”,EPA-94-E3S2-02-01
何文淵,1999,”汽油車引擎廢氣揮發性有機物成分及光化反應潛勢”,國立成功大學環境工程研究所碩士論文
何永盛、李文智、王雅玢,1996,”柴油品質對車輛排放污染物之影響”,環保署,台北
周忠義,2002,”室外空氣中揮發性有機物之毒性探討”, 國立成功大學環境工程研究所碩士論文
邱雅琪,2003,”以異辛烷為汽油添加劑對機車引擎揮發性有機物及醛酮化合物排放之影響”,國立成功大學環境醫學研究所碩士論文
翁閎政,1998,”機車排氣之揮發性有機物特徵及光化反應性研究”,國立成功大學環境工程研究所碩士論文
郭育良,1998,”氣喘患者之基因易感性與空氣污染相關性研究”,成功大學醫學院環境醫學研究所,永續會空污防制計畫
陳志強,2002,”汽油油品及引擎排放廢氣中金屬元素之特徵”,國立成功大學環境工程研究所碩士論文
陳志傑、林文印、黃榮芳、張章堂,1996,”汽機車排氣污染改善技術研發-機車氣懸微粒量測與控制研究”,環保署,台北
陳律言、華梅英、李曜全、余泰毅、吳中興,2005,”使用中機車排放廢氣所含微粒粒徑分布探討”,年中華民國國際氣膠科技研討會,台北
黃靖雄,2002年再版,”現代低公害省油汽車排氣污染控制技術及裝置”,全華科技圖書出版
徐武軍,2005,”石油化學工業-原料製程及市場”,五南圖書出版
”三陽機車心情125&高手125維修手冊”,2002,三陽機車服務部出版
葉惠芬,2004,”冷熱啟動測試機車排放揮發性有機物特徵之差異研究”,國立成功大學環境工程研究所碩士論文
趙浩然,2000,”多種機動車輛排放醛酮化合物之研究”,國立成功大學環境工程學系博士論文
劉育穎,2000,”機車排放醛酮化合物特徵與光化反應性研究”,國立成功大學環境工程研究所碩士論文
館正知,1991,”重金屬中毒及其防止對策”,工業安全衛生,第21期,24-30.