簡易檢索 / 詳目顯示

研究生: 林珊君
Lin, Shan-Chun
論文名稱: 探討Nucleolin轉譯後被切割之機轉及其所扮演之角色
To Study the Role and Mechanism of Post-translational Cleavage in Nucleolin
指導教授: 洪建中
Hung, Jan-Jong
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: Nucleolin轉譯後修飾基質金屬蛋白酶7基質金屬蛋白酶9
外文關鍵詞: Nucleolin, post-translational processing, Matrix metalloproteinase 7, Matrix metalloproteinase 9
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌為十大癌症之一,在世界衛生組織的統計下,每年約有140萬人死於肺癌。而且合併計算其它併發症的病人,肺癌的五年存活率相較低於其他癌症只有15.2%。Nucleolin在細胞具有許多的功能,包含了調控細胞增生、細胞凋亡、信使RNA (messenger RNA)的穩定性等。先前的研究已經指出nucleolin在腫瘤細胞中大量表現,若抑制nucleolin的表現會影響到癌細胞增生,顯示出nucleolin在癌化過程中扮演重要角色。而在過去實驗室利用組織免疫染色法觀察肺腺癌病患的肺組織nucleolin的表現,結果顯示在組織中的nucleolin有不同的表現量,經統計分析發現若nucleolin表現量較高的病患其預後較差相較於低nucleolin表現的病患;另外利用西方墨點法觀察肺腺癌病患肺組織和實驗室建立的EGFR (exon19 deletion)和Kras活化誘導肺癌轉殖鼠組織中nucleolin的表現,而實驗結果顯示出不論在肺癌病患組織或是實驗室建構的誘導肺癌轉殖鼠組織中c-nucleolin (55 KDa)有非常顯著性增加。根據結果我們假設c-nucleolin會參與肺癌細胞轉移過程當中。但是我們非常好奇在肺癌進展過程中c-nucleolin大量累積是扮演什麼角色以及是誰去切nucleolin和切位位於何處。為了證實這個假說,首先我們建構GFP-Nucleolin載體,根據結果推論出c-nucleolin切位為nucleolin第251到261個胺基酸,之後更進一步架構GFP-nucleolin-myc質體來確認確切切位是位於這區間哪一個胺基酸。利用架構好的質體進行單點突變試驗分別將這區間的胺基酸單一進行點突變,發現在255這個胺基酸位置若突變會使c-nucleolin (55KDa)切下量明顯減少許多,結果證明nucleolin切成c-nucleolin的位置是在255這個胺基酸位置。另外方面我們好奇的是哪個酵素去切nucleolin形成c-nucleolin,為了要找出是哪個酵素去切nucleolin,在尋找可能會切nucleolin的酵素中發現基質金屬蛋白酶會切nucleolin,於是更進一步使用小髮夾RNA (Short hairpin RNA, shRNA)分別降解不同的基質金屬蛋白酶表現,結果發現若降解基質金屬蛋白酶7 的表現會影響c-nucleolin的表現量。而在確認切位是位於何處以及切 nucleolin的酵素後,我們接著探討這c-nucleolin片段在肺癌中扮演什麼角色,是否會更加影響細胞生長速率和轉移能力。利用我們建構的c-nucleolin片段 (255-710)的載體轉染至肺癌細胞發現到會增進癌細胞生長速率並且顯著性的增加細胞轉移及侵犯能力。根據實驗結果,我們好奇的是c-nucleolin增強癌細胞轉移侵犯能力是透過影響哪些基因造成的,下一步利用DNA微陣列晶片分析nucleolin和c-nucleolin是影響到哪些基因表現,其中c-nucleolin影響的基因中和癌症進展相關有基質金屬蛋白酶 9 (Matrix metalloproteinases 9)、ALK (Anaplastic lymphoma kinase)、CRTC1 (CREB-regulated transcription coactivator 1)…等基因,其中基質金屬蛋白酶 9最引為注目,過去許多研究指出基質金屬蛋白酶 9與癌症轉移等相關,在這之中發現c-nucleolin會結合上基質金屬蛋白酶 9的3’ UTR區域並更增加基質金屬蛋白酶 9穩定性,使基質金屬蛋白酶 9大量表現造成癌細胞轉移,使癌症進展更加惡化。而綜合以上結果,證實當腫瘤持續惡化時 nucleolin被基質金屬蛋白酶 7切割成 c-nucleolin並大量累積,促使癌細胞增生並且增強癌細胞轉移的現象。

    Nucleolin distributes in the nucleolus, nucleus and cytoplasm of whole cell contains multifunction such as ribosome maturation, cell growth, apoptosis, mRNA regulation, pre-rRNA transcription. Previous studies indicated that overexpression of nucleolin was found in the cancer cells, and knockdown of nucleolin could inhibit cell proliferation, indicating nucleolin might be related to tumorigenesis. Interestingly, our recent results reveal that not only accumulation of nucleolin was found in lung cancer formation, but nearly all of the nucleolin was modified by post-translational processing into a cleavage form, 55 KDa, in animal and clinical samples. Therefore, cancer cells how to accumulate and cleave nucleolin, and what is the role of this overexpressed truncated nucleolin are interesting and need to be elucidated further. Our recent study has known that activation of Kras and EGFR contributes to nucleolin overexpression and Sp1 involves in nucleolin expression. In this study, we will try to clarify the mechanism and function of nucleolin cleavage. By using the truncated and single nucleotide mutation experiments, we found that nucleolin was major cutted at Asp 255th. Furthermore, various proteases inhibitors used here to block the nucleolin cleavage found that Marimastat, Matrix metalloproteinases (MMPs) inhibitors, can prevent the nucleolin cleavage, implying MMPs might be involved in the nucleolin cleavage. Different shRNA of MMPs used to knockdown MMPs individually found that knockdown Matrix metalloproteinase 7 (MMP7) could reduce the nucleolin cleavage obviously, indicating that MMP7 could affect the nucleolin cleavage. Finally, by using the truncated nucleolin to study its effect in cancer cell proliferation and metastasis found that truncated nucleolin increased the cell proliferation and metastasis activity strongly through increase in the oncogenes expression including mmp9, alk and so on. Taken together, nucleolin cleaved by MMP7 at Asp 255th increases oncogenes expression, leading tumor growth and metastasis.

    摘要 I Abstract III 誌謝 V 目錄 VII 縮寫檢索表 XVI 第一章 序論 1 1.前言 1 2.肺癌 1 2-1肺癌定義 1 2-2肺癌中的基因突變 2 2-3肺癌轉移 3 3. Nucleolin 3 3-1 Nucleolin之結構及功能簡介 3 3-2 Nucleolin 與腫瘤的關連性 4 3-3片段化的nucleolin (c-nucleolin) 4 4. 基質金屬蛋白酶家族 (Matrix metalloproteinases) 5 4-1 基質金屬蛋白酶功能、結構和分類 5 4-2 基質金屬蛋白酶在腫瘤組織中表現 5 4-3 基質金屬蛋白酶7 (Matrix metalloproteinase 7) 6 4-4 基質金屬蛋白酶9 (Matrix metalloproteinase 9) 6 5. 研究目標 7 第二章 實驗材料 8 1.化學試劑 8 2.試劑組 10 3.抗生素 11 4.抗體 11 5.細胞培養相關物品 12 5-1 細胞培養液 12 5-2 細胞培養相關材料 12 6.實驗用器材 13 7.其他實驗相關器材 14 第三章 實驗方法 15 1.細胞株的培養 15 1-1 細胞種類 15 1-2 培養方式 16 1-3 繼代培養 (subculture) 16 2.條件式基因轉殖鼠 (conditional transgenic mice) 17 2-1條件式Kras基因轉殖鼠 (Condition Kras activated transgenic mice)原理 17 2-2條件式EGFR基因轉殖鼠 (Condition EGFR activated transgenic mice)原理 17 2-3 PCR基因定型 (PCR genotyping) 18 3.蛋白質分析 (Protein level analysis) 19 3-1全細胞液的抽取 (Total cell lysate extraction) 19 3-2硫酸十二酯鈉聚丙烯醯胺凝膠法 (SDS-PAGE) 20 3-3濕式蛋白質電泳轉漬法 (Transfer) 21 3-4阻斷 (Blocking) 22 3-5免疫染色 (Immunoblotting) 22 4.DNA表現量分析 (DNA level analysis) 23 4-1 RNA萃取 (RNA extraction) 23 4-2反轉錄聚合酶連鎖反應 (RT-PCR) 23 4-3聚合酶連鎖反應 (PCR)條件 24 5.建構載體 (Nucleolin truncated form construct) 25 5-1設計引子 25 5-2聚合酶連鎖反應 (PCR)條件 27 5-3 yT&A載體選殖 (yT&A cloning) 27 5-4質體製備 (plasmid preparation) 28 5-5選殖 (cloning) 28 5-6大量抽取質體DNA (Plasmid) 29 5-7暫時性轉染 (Transient transfection) 29 6.點突變質體製備 (Site-directed mutagenesis) 30 7.免疫組織染色 (Immunohisochemistry,IHC) 33 7-1脫蠟 33 7-2抗體修復 (Antigen Retriever) 33 7-3染色 33 8.細胞靜默 Nucleolin系統 (Nucleolin knockdown) 34 8-1感染病毒 34 8-2降解nucleolin表現後觀察細胞生長曲線 34 8-3利用株落形成分析 (soft agar assay) 觀察降解nucleolin後細胞生長 34 9.過度表現Nucleolin系統 (Nucleolin overexpression) 35 9-1過度表現nucleolin表現後觀察細胞生長曲線 35 9-2體外侵犯性試驗 (In vitro Matrigel-conbined transwell invasion assay) 35 9-3體外創傷癒合試驗 (In vitro wound-healing assay) 35 10.免疫缺陷鼠(Immunodeficient mice) 36 10-1 Nonobese diabetic-severe combined immunodeficiency mice 36 10-2 異種移植模型腫瘤試驗原理 36 10-3 異種移植模型腫瘤試驗 37 10-4 尾靜脈注射腫瘤轉移試驗 (tail vein injection metastasis assay) 37 11.c-nucleolin 基因分析 37 11-1 DNA微陣列分析 37 11-2明膠酶譜法 (Zymography) 37 11-3 RNA 穩定性測驗 (RNA stability) 38 11-4 RNA免疫沉澱法 (RNA Immunoprecipitation) 38 第四章 實驗結果 39 1.Nucleolin的累積和肺癌預後相關性 39 1-1 Nucleolin累積對肺癌病人的預後率呈現負相關 39 2.c-Nucleolin的累積和肺癌進展相關性 39 2-1 c-Nucleolin在人類肺腺癌檢體中大量表現 39 2-2 c-Nucleolin在肺癌轉殖鼠中大量表現 40 3.在不同的細胞中Nucleolin全長及c-nucleolin的表現 40 3-1 c-Nucleolin在肺癌細胞株中大量表現 40 4.預測c-nucleolin (55 KDa)的切位 41 4-1 預測c-nucleolin的切位位於251-260個胺基酸這區間 41 4-2 cleavage form nucleolin的確切切位在nucleolin的Asp255th這個位置 41 5.探討切割nucleolin的酵素 42 5-1預測可能切割nucleolin的酵素 42 5-2基質金屬蛋白酶抑制劑影響nucleolin切割 42 5-3基質金屬蛋白酶 7 (MMP-7)切割nucloelin成c-nucleolin 42 6.探討c-nucleolin (55 KDa)在肺癌中功能 43 6-1 降解nucleolin會影響肺癌細胞生長 43 6-2 過度表現c-nucleolin會增加肺癌細胞生長能力 44 6-3 c-nucleolin (55KDa) 增加細胞癌細胞移動爬行 (migration)的能力 44 6-4 c-nucleolin (55KDa) 增加細胞癌細胞侵襲 (invasion)的能力 44 7.探討c-nucleolin (55 KDa)調控的基因 45 7-1 利用DNA 微陣列分析c-nucleolin能更加促進癌症進展相關基因的表現 45 7-2 c-nucleolin能更加活化基質金屬蛋白酶 9的活性 45 7-3 c-nucleolin能更加活化基質金屬蛋白酶 9的活性是透過c-nucleolin結合上基質金屬蛋白酶 9的3’-UTR區域來增加基質金屬蛋白酶 9 的RNA穩定性 46 第五章 實驗討論 47 1.Nucleolin和癌症 47 2.c-nucleolin在細胞中扮演的角色 48 3.總結 49 第六章 參考文獻 50 實驗結果 55 Figure.1. To clarify the expression of c-nuleolin in normal and lung cancer cell. 56 Figure.2. The EGFR (exon19 deletion)-driven lung cancer transgenic mice model 57 Figure.3. To predict cleaved nucleolin cutting sites. 58 Figure.4. Examination of the cellular proteolytic processing sites of nucleolin. 59 Figure 5. To identify the Matrix metalloproteinases inhibitor, marimastat, can inhibit nucleolin cleavage. 60 Figure.6. Matrix metalloproteinase 7 can cleave the nucleolin to c-nucleolin. 61 Figure.7. Matrix metalloproteinase 7 mediates the nucleolin cleavage. 62 Figure.8. Knockdown of nucleolin on lung cancer can inhibit cell proliferation thourgh activating the apoptosis pathway. 63 Figure.9. Truncated nucleolin (255-710) enhances the cell proliferation in lung cancer. 64 Figure.10. Truncated nucleolin (255-710) enhances tumor growth and metastasis ability in SCID mice xenografted with H1299 cells. 65 Figure.11. Truncated nucleolin (255-710) enhanced the migration and invasive ability in lung cancer cells. 66 Figure.12. Truncated nucleolin (255-710) enhances cancer-related genes expression. 67 Figure.13. Truncated nucleolin (255-710) enhances matrix metalloproteinase 9 RNA and protein expression. 68 Figure.14. TNCL enhances binding to matrix metalloproteinase 9 3’-UTR to stableize the matrix metalloproteinase 9 RNA expression. 69 Figure.15. Working model 70 附錄 71 Appendix.1. The information of lung adenocarcinoma. 72 Appendix.2. The doman maping of nucleolin. 73 Appendix.3. The establishment of various truncated nucleolin 74 Appendix.4. The establishment of GFP-NCL-myc 75 Appendix.5. To mutate the exact sites by site-directed mutagenesis 76 Appendix.6. The model of Kras4bG12D induced lung tumerigenesis under the contral of doxycycline. 77 Appendix.7. Doxycycline induced lung tumor formation accompanied by increases in Kras4bG12D transgenic mice 78 Appendix.8. Nucleolin express in different stages of human lung adenocarcinoma. 79 Appendix.9. Nucleolin express in human lung adenocarcinoma . 80 Appendix.10. The expression of nucleolin in Kras and EGFR lung cancer transgenic mice. 81 Appendix.11. To observe the expression of cleavage nucleolin when knockdown the matrix metalloproteinases level. 82 Appendix.12. To observe the expression of cleavage nucleolin when knockdown the TASP1, aspartate protease, ADAMTS1. 83

    Spira, A., and Ettinger, D. S. (2004). Multidisciplinary management of lung cancer. N Engl J Med 350, 379-392.
    Keith, R.L., and Miller, Y.E. (2005). Lung cancer: genetics of risk and advances in chemoprevention. Curr Opin Pulm Med 11, 265-271.
    Rosti, G., Bevilacqua, G., Bidoli, P., Portalone, L., Santo, A., and Genestreti, G. (2006). Small cell lung cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 17 Suppl 2, ii5-10.
    Kenfield, S.A., Wei, E.K., Stampfer, M.J., Rosner, B.A., and Colditz, G.A. (2008). Comparison of aspects of smoking among the four histological types of lung cancer. Tobacco control 17, 198-204.
    Couraud, S., Zalcman, G., Milleron, B., Morin, F., and Souquet, P.J. (2012). Lung cancer in never smokers - A review. Eur J Cancer 48, 1299-1311.
    Wen, W., Shu, X.O., Gao, Y.T., Yang, G., Li, Q., Li, H., and Zheng, W. (2006). Environmental tobacco smoke and mortality in Chinese women who have never smoked: prospective cohort study. BMJ 333, 376.
    Weiss, J., and Stinchcombe, T.E. (2012). Treatment of elderly patients with stage IV non-small-cell lung cancer. Expert Rev Anticancer Ther 12, 111-120.
    Subramanian, J., and Govindan, R. (2007). Lung cancer in never smokers: a review. J Clin Oncol 25, 561-570.
    Lovly CM, Carbone DP.(2011). Lung cancer in 2010: One size does not fit all. Nat Rev Clin Oncol 8, 68-70.
    Heukamp, L.C., and Buttner, R. (2010). Molecular diagnostics in lung carcinoma for therapy stratification. Pathologe 31, 22-28.
    Mitsudomi, T., and Yatabe, Y. (2010). Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277, 301-308.
    Takahashi, K., Kohno, T., Matsumoto, S., Nakanishi, Y., Arai, Y., Yamamoto, S., Fujiwara, T., Tanaka, N., and Yokota, J. (2007). Clonal and parallel evolution of primary lung cancers and their metastases revealed by molecular dissection of cancer cells. Clin Cancer Res 13, 111-120.
    van Zandwijk, N., Mathy, A., Boerrigter, L., Ruijter, H., Tielen, I., de Jong, D., Baas, P., Burgers, S., and Nederlof, P. (2007). EGFR and KRAS mutations as criteria for treatment with tyrosine kinase inhibitors: retro- and prospective observations in non-small-cell lung cancer. Ann Oncol 18, 99-103.
    Bates, S., Phillips, A.C., Clark, P.A., Stott, F., Peters, G., Ludwig, R.L., and Vousden, K.H. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395, 124-125.
    Tang, X., Varella-Garcia, M., Xavier, A. C., Massarelli, E., Ozburn, N., Moran, C., and Wistuba, II (2008). Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev Res (Phila) 1, 192-200.
    Bremnes, R. M., Veve, R., Hirsch, F. R., and Franklin, W. A. (2002). The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36, 115-124.
    Liu, J., Tsao, M. S., Pagura, M., Shalinsky, D. R., Khoka, R., Fata, J., and Johnston, M. R. (2003). Early combined treatment with carboplatin and the MMP inhibitor, prinomastat, prolongs survival and reduces systemic metastasis in an aggressive orthotopic lung cancer model. Lung Cancer 42, 335-344.
    Orrick, L. R., Olson, M. O., and Busch, H. (1973). Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 70, 1316-1320.
    Mongelard, F., and Bouvet, P. (2007). Nucleolin: a multiFACeTed protein. Trends Cell Biol 17, 80-86
    Ginisty, H., Sicard, H., Roger, B., and Bouvet, P. (1999). Structure and functions of nucleolin. J Cell Sci 112 (Pt 6), 761-772.
    Angelov, D., Bondarenko, V. A., Almagro, S., Menoni, H., Mongelard, F., Hans, F., Mietton, F., Studitsky, V. M., Hamiche, A., Dimitrov, S., and Bouvet, P. (2006). Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 25, 1669-1679.
    Mi, Y., Thomas, S. D., Xu, X., Casson, L. K., Miller, D. M., and Bates, P. J. (2003). Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin. J Biol Chem 278, 8572-8579.
    Zhang, J., Tsaprailis, G., and Bowden, G. T. (2008). Nucleolin stabilizes Bcl-X L messenger RNA in response to UVA irradiation. Cancer Res 68, 1046-1054.
    Sengupta, T. K., Bandyopadhyay, S., Fernandes, D. J., Spicer, E. K. (2004). Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. J Biol Chem 279, 10855-10863
    Willimott, S., Wagner, S.D. (2010). Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 38, 1571-1575
    Krizkova, S., Zitka, O., Masarik, M., Adam, V., Stiborova, M., Eckschlager, T., Hubalek, J., Kizek, R. (2011). Clinical importance of matrix metalloproteinases. Bratisl Lek Listy 112, 435-440.
    Fahling, M., Steege, A., Perlewitz, A., Nafz, B., Mrowka, R., Persson, P. B., Thiele, B. J. (2005). Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim Biophys Acta 1731, 32-40
    Xu, Z., Joshi, N., Agarwal, A., Dahiya, S., Bittner, P., Smith, E., Taylor, S., Piwnica-Worms, D., Weber, J., Leonard, J. R. (2012). Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest. J Neurooncol 108, 59-67.
    Otake, Y., Soundararajan, S., Sengupta, T. K., Kio, E. A., Smith, J. C., Pineda-Roman, M., Stuart, R. K., Spicer, E. K., Fernandes, D. J. (2007). Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109, 3069-75.
    Gattoni-Celli, S., Buckner, C. L., Lazarchick, J., Stuart, R. K., Fernandes, D. J. (2009). Overexpression of nucleolin in engrafted acute myelogenous leukemia cells. Am J Hematol 84, 535-538.
    Inder, K. L., Hill, M. M., and Hancock, J. F. (2010). Nucleophosmin and nucleolin regulate K-Ras signaling. Commun Integr Biol 3, 188-190.
    Pasternack, M. S., Bleier, K. J., and McInerney, T. N. (1991). Granzyme A bindingto target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266, 14703-14708.
    Wang, K., Deng, G., Chen, G., Liu, M., Yi, Y., Yang, T., McMillan, D. R., Xiao, X. (2012). Heat shock protein 70 inhibits hydrogen peroxide-induced nucleolar fragmentation via suppressing cleavage and down-regulation of nucleolin. Cell Stress Chaperones 17, 121-130.
    Woessner JF Jr. (1994). The family of matrix metalloproteinases. Ann N Y Acad Sci 732, 11-21
    Lund, L. R., Romer, J., Bugge, T. H., Nielsen, B. S., Frandsen, T. L., Degen, J. L., Stephens, R. W and DANA, K. (1999). Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J 18, 4645-4656
    Massova, I., Kotra, L. P., Fridman, R and Mobashery, S. (1998). Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12, 1075-1095
    Sternlicht, M. D., Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463-516.
    Hadler-Olsen, E., Winberg, J. O., Uhlin-Hansen, L. (2013). Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol 34, 2041-2051.
    Wilson, C. L., Matrisian, L. M. (1996). Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol 28, 123-136.
    Nelson, A. R., Fingleton, B., Rothenberg, M. L., Matrisian, L. M. (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18, 1135-1149.
    Shiomi, T., Okada, Y. (2003). MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22, 145-152.
    Bolon, I., Devouassoux, M., Robert, C., Moro, D., Brambilla, C., Brambilla, E. (1997). Expression of Urokinase-Type Plasminogen Activator, Stromelysin 1, Stromelysin 3, and Matrilysin Genes in Lung Carcinomas. Am J Pathol 150, 1619-1629.
    Nair, R. R., Boyd, D. D. (2005). Expression cloning of novel regulators of 92 kDa type IV collagenase expression. Biochem Soc Trans 33(Pt 5), 1135-1136.

    下載圖示 校內:2015-08-06公開
    校外:2015-08-06公開
    QR CODE