簡易檢索 / 詳目顯示

研究生: 呂泫衡
Lu, Hsuan-Heng
論文名稱: 高解析度雲紋干涉儀後處理軟體開發
Post Processing for High Sensitivity Moire Interferometry
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: 熱應力雲紋干涉儀疊圖小波轉換影像處理
外文關鍵詞: thermal stress, Moiré interferometry, phase-shifting technique, wavelet transform, image processing
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於封裝結構,熱應力為影響其可靠度的重要因素之一。更高精度的相位移技術,可用來觀測更細微區域之應變場分佈,其解析度為傳統干涉儀的八倍或更高。因此,由雲紋干涉圖像可精確地分析產品的位移與應變量。
    本研究主要是以縮短原先後處理時間為目標,整合出一套新的後處理軟體,後處理工作主要處理雲紋干涉儀所拍攝之U/V場各四張相位移雲紋圖像,應用影像處理技術得到高解析度的相位圖並擷取其中欲觀察之部分,計算其受熱應變之行為。處理內容包含五個步驟:第一為將U/V場相位移圖進行疊合,判斷是否相位相消;第二為將U/V場相位移圖利用小波轉換分析及相位移法形成U/V場兩張高解析度相位圖 (208 nm/fringe);第三為處理兩張高解析度相位圖,形成位移圖 (52 nm/fringe);第四為處對照高解析度相位圖與實體圖,擷取欲觀察部分;第五為分析所截取之部分得到該部分的變形量及應變。
    本研究的案例分析以低介電值材料 (low-k materials) 覆晶陣列錫球構裝 (FC-BGA) 產品來做實驗,由於低介電值材料都具多孔性,在焊線接合時機械強度不足,故選此材料結構來分析。在計算其試片整體的橫向變形,可發現在錫球銲接點部分的橫向位移量僅在5 μm左右,並不會產生破壞的行為。使用新的後處理軟體與先前軟體的處理,可得到相近的變形量與相同的展開趨勢。
    新的後處理軟體直接選取八張相位移影像後,即可得到疊圖、高解析度相位圖以及位移圖,並且可直接進行相對位置的擷取,並直接對所擷取之影像進行分析。原先後處理時間需要近三個小時,新軟體可有效縮短在十分鐘內完成分析,改善從前採取人工計算獲取條紋的翹曲量往往無法判定角邊的條紋數及原先分析軟體需避免過大的雲紋圖像輸入軟體中,導致計算失效的問題。

    For controlling the structural reliability, thermally induced stresses play an important role. More accurate phase shift technique can be used to observe more subtle area of the strain fields. The resolution of moiré interferometry is up to 8 times greater than conventional moiré interferometry. Hence, accurately determine displacements and strains can be determined by moiré interference fringe.
    In this study, we focus on reducing current post processing time as a target, and to integrate a new post processing software. Main post processing works are to deal with four Moiré phase shift images of U/V field, using image processing techniques to get high resolution phase maps, and capturing parts of images we want to observe. New approach includes five steps. The first objective is to superimpose U/V-fields' eight images, and to check if the final pictures are fringe-free, then you may need to reshoot U/V-fields' eight images. The second objective is to convert eight images to two high resolution phase images (208 nm/fringe) by using wavelet transform and phase-shifting techniques. The third objective is to convert two high resolution phase images to phase images (52 nm/fringe), and to check if the spacing between the fringes fluctuates are periodically. The fourth objective is to contrast optical image and U/V-fields' phase images, and to capture the interesting regions. The final objective is to deal with the capture regions, and to do strain field analysis.
    In order to quantitatively find out the physical relation between package micron-level warpage and solder bump nano-level displacement, a systematic study of warpage characteristics of 1112-ball flip-chip BGA with and without a heat spreader was carried out in this study. From the experiment U-field results, the displacement only about 5 μm that didn't cause samples to damage. And compare with Proposed and current approach, proposed processing approach had the same deformation and trend as current processing approach.
    Proposed processing approach select the eight phase shift images directly, and get superimposed images, high-resolution phase maps (208 nm/fringe) and phase maps (52 nm/fringe). Moreover, proposed processing approach captures relative positions between physical and high-resolution phase maps directly and analyzes these maps which are captured. Current processing approach need about three hours to complete analysis, but proposed processing approach completes analysis within ten minutes. This new software improves manual calculation of fringe number and calculation of warpage that can not determine the fringe number of corners, and improves current analysis software can not work when we input too large moiré images.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 IC封裝的分類與製程簡介 1 1.2 失效機制與可靠度因素 5 1.3 文獻回顧 6 1.4 研究目的 9 1.5 本文架構 9 第二章 實驗裝置與程序 11 2.1 前言 11 2.2 傳統雲紋干涉儀 12 2.3 高解析度雲紋干涉儀 23 2.3.1 實驗程序 25 第三章 相位移法及相位展開法 33 3.1 相位移法之基本概念 33 3.2 四步相位移法之基本原理 33 3.3 相位展開法基本概念 35 3.4 相位展開法基本原理 36 第四章 後處理軟體開發 40 4.1 軟體開發環境 40 4.2 軟體架構 43 4.2.1 影像疊合 46 4.2.2 形成高解析相位圖 47 4.2.3 形成細線化位移圖 49 4.2.4 影像裁剪與擷取 50 4.2.5 熱變形之量測 52 第五章 案例分析體開發 57 5.1 實驗細節 57 5.2 整體變形趨勢 60 5.3 高解析度雲紋影像 62 5.4 應變場分佈 64 5.5 案例分析結論 73 第六章 結論與未來工作 74 6.1 綜合結論結論 74 6.2未來工作 75 參考文獻 77 索引 82 自述 84

    [1]鐘文仁、陳佑任,IC封裝製程與CAE應用,全華科技圖書公司,台北市 (2005)。
    [2]游晶瑩,大尺度面積型態構裝錫球之可靠度分析,國立清華大學博士論文(2005)。
    [3]林勇志,CSP封裝產品在循環熱應力作用下之可靠度分析,國立成功大學機械工程學系碩士論文(2000)。
    [4]邱碧秀,微系統封裝原理與技術,滄海書局,台北市(2005)。
    [5]龔哲立,電子構裝封膠之黏彈性模型及其製程翹曲之模擬,國立成功大學機械研究所碩士論文(2008)。
    [6]Lord Rayleigh, “On the Manufacture and Theory of Diffraction Grating,” Phil. Mag. Series4, pp. 81-93(1874).
    [7]J. Guild, The Interference Systems of Crossed Diffraction Gratings: Theory of Moirè Fringes, Oxford University Press, New York(1956).
    [8]F. M. Gerasimov, V. P. Sergeev, I. A. Teltevskii, V. V. Sergeev and B. V. Marichev, “The Use of Moirè Interference Fringes to Control the Ruling of Diffraction Gratings,” Optics and Spectroscopy, Vol. 19, pp. 152-156(1965).
    [9]N. Wadsorth, M. Marchant, B. Billing, “Real-Time Observation of In-Plane Displacements of Opaque Surfaces,” Optics Laser Technol., Vol. 5, No. 3, pp. 119-123(1973).
    [10]R. Czarnet, New Methods in Moirè Interferometry, PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA(1984).
    [11]M. L. Baschore and D. Post, High-Frequency, “High-Reflectance Transferable Moirè Gratings,” Exp. Tech., Vol. 8, No. 5, pp. 29-31(1984).
    [12]R. Czarnek, D. Post, and D. Joh, “Shear strains in a graphite/PEEK beam by moiré interferometry with carrier fringes,” Experimental Mechanics, Vol. 27, pp. 246-249 (1987).
    [13]A.F. Bastawros and A.S. Voloshin, “Thermal strain measurements in electronic packages through fractional fringe moiré interferometry,” ASME Journal of Electronic Packaging, Vol. 112, pp. 303-308(1990).
    [14]D. Post and J.D. Wood, “Determination of Thermal Strain by Moirè Interferometry,” Experimental Mechanics, pp. 318-322(1989).
    [15]A. F. Bastawros, A. S. Voloshin, and P. Rodogoveski, “Experimental Validation of Fractional Fringe Moirè Interferometry,” SEM Spring Conference on Experimental Mechanics, pp. 406-410(1989).
    [16]A.F. Bastawros, A.S, Voloshin, “Mixed Mode Stress Intensity Factors by Fractional Fringe Moirè Interferometry,” Proc. 1990 Society of Experimental Mechanics Spring Conf., pp.69-75(1990).
    [17]B. Han and D. Post, “Immersion Interference for Microscopic Moiré Interferometry,” Experimental Mechanics, Vol.32, No.1, pp.38-41, (1992).
    [18]Y. Guo, C.K. Lim, W.T. Chen and C.G. Woychik, “Solder Ball Connect (SBC) assemblies under thermal loading: I. Deformation measurement via moiré interferometry and its interpretation,” IBM Journal of Research and Development, Vol. 37, No. 5, pp. 635-648(1993).
    [19]H.C. Choi, Y. Guo, W. LaFontaine and C.K. Lim., “Solder Ball Connect (SBC) assemblies under thermal loading: II. Strain analysis via image processing, and reliability considerations,” IBM Journal of Research and Development, Vol. 37 No. 5, pp. 649-659(1993).
    [20]T. Y. Wu, Y. Guo, and T. Chen, “Thermal-mechanical strain
    characterization for printed wiring boards,” IBM Journal of Research and Development, Vol. 37, No. 5, pp. 621-634(1993).
    [21]J.S. Corbin, “Finite element analysis for Solder Ball Connect (SBC) structural design optimization,” IBM Journal of Research and Development, Vol. 37, No. 5, pp. 585-596(1993).
    [22]W.W. Macy, “Two-dimensional Fringe-pattern Analysis,” Appl. Opt., 22, pp. 3898-3901(1983).
    [23] D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellulr-automata Method for phase unwrapping,” Journal of optical society of America, 4(1), 297-280(1987).
    [24]I. Daubechies, Ten Lectures on Wavelets, SIAM Philadelphia, 1992.
    [25]Mikel R. Miller, Xiang Dai, Guotao Wang and Paul S. Ho, “Study of Thermal Deformation in High-Density Electric Packages Using High Resolution Moiré Interferometry,” Technical Symposium ChipMOS, pp. 231-236(2001).
    [26]Kemao Q, Soon S and Asundi A., “Instantaneous frequency and its application to strain extraction in moiré interferometry,” Appl. Opt., 42, 6504-6509( 2003).
    [27]Chang R, Sheu J, Lin C and Liu H., “Analysis of CCD moiré pattern for micro-range measurements using the wavelet transform,” Opt. Laser technology, 35, 43-47(2003).
    [28]Liu H, Cartwright A and Basaran C., “Experiment verification of improvement of phase shifting moiré interferometry using wavelet-based image processing, ” Opt. Eng., 43, 1206-1212(2004).
    [29]Mikel Rolf Miller, Interfacial Adhesion and Subcritical Debonding of Low-k Dielectrics in Flip-Chip-Packaged Copper/Low-k Interconnect Structures, The University of Texas at Austin( 2000).
    [30]Guotao Wang, Thermal Deformation of Electronic Packages and Packaging Effect on Reliability for Copper/Low-k Interconnect Structures, The University of Texas at Austin( 2004).
    [31]Daniel Post, Bongtae Han and Peter Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials, Springer-Verlag, New York(1994).
    [32]參照[25]。
    [33]Lois Elizabeth Khin Tsun Yong, Study of Thermal Deformation in Wire-Bonded Stacked Die Packages by Moiré Interferometry, The University of Texas at Austin(2002).
    [34]V. Srinivasan, H.C. Liu and M. Halioua, “Automated phase-measuring profilometry: a phase-mapping approach,” Applied Optics, Vol. 24, No. 2, pp. 185-188(1985).
    [35]M. Chang, C.-P. Hu and J.C. Wyant, “Phase Shifting Holographic Interferometry,” Conf. Proc. SPIE Optics in Engineering Measurement, Vol. 599, pp. 149-154(1985).
    [36]參照[26]。
    [37]Mikel R. Miller, I. Mohammed, X. Dai, N. Jiang and P. S. Ho, “Analysis of Flip-chip Packages using High Resolution Moiré Interferometry,” Proc. 49th Electronic Components and Technology Conference, pp. 979-986 (1999).
    [38]S. Liu, J. Wang, D. Zou, X. He, Z. Qian and Y. Guo, “Resolving Displacement Field of Solder Ball in Flip-Chip Package by both Phase Shifting Moiré Interferometry and FEM Modeling,” Proc 48th Electronic Components and Technology Conf, Seattle, WA, pp.1345-1353 (1998).
    [39]蘇理中,應用雲紋干涉儀分析打線封裝產品之熱變形行為,國立成功大學機械工程研究所論文(2009)。
    [40]葉奕銘,相位移數位剪像之相位展開法研究,國立成功大學機械工程學系碩士論文( 2001)。
    [41]王晉中,Matlab 7在工程上的應用,高立圖書公司。
    [42]Rafael C. Gonzalez, Richard E. Woods and Steven L. Eddins, Digital Image Processing Using MATLAB, Pearson Education(2008).
    [43]劉家銘,小波分析應用於奈米數位疊紋法之研究,國立成功大學機械工程學系博士論文(2006)。
    [44]http://www.mathworks.com
    [45]I. Daubechies, Ten Lectures on Wavelet, Society for Industrial and Applied Mathematics, Philadelphia, Pa (1992).

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE