| 研究生: |
蔣如姿 Chiang, Ju-Tzu |
|---|---|
| 論文名稱: |
探討泛素特異性胜肽酶二十四對溴結構域蛋白在肺癌進程中扮演的角色 To study the function between ubiquitin-specific peptidase 24 and bromodomain-containing proteins in lung cancer progression |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 泛素特異性胜肽酶24 、肺癌 、溴結構域蛋白 |
| 外文關鍵詞: | Ubiquitin-specific peptidase 24, lung cancer, bromodomain-containing proteins |
| 相關次數: | 點閱:60 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泛素化與去泛素化在蛋白質後轉譯修飾扮演重要角色,決定了蛋白在細胞中的穩定性,活性及定位。 而近年來有大量研究顯示泛素連接酶(E3 ligase)以及去泛素酶(Deubiquitinating enzymes.DUBs)在泛素蛋白酶體系統中一旦失去平衡會導致疾病生成甚至促進癌症發展.而在我們先前的研究中,我們闡明了泛素特異性胜肽酶24(Ubiquitin-specific peptidase 24 ,USP24)這一種嶄新的去泛素化酶在肺癌發展中扮演了多重角色。透過激活EGFR訊息傳導路徑能使USP24在肺癌早期表現明顯地降低; 然而,其表現量卻能透過單核苷酸多態性(SNP)和RNA編輯在肺癌晚期增加。此外,在我們的酵母雙雜合結果中,我們發現USP24可能與多個溴結構域蛋白相互作用。並且在我們最近初步結果顯示,USP24蛋白不但可以與BRD2, BRD7 及BRG1蛋白作用並能進一步透過去泛素化增加BRD2的蛋白質穩定性,這意味著這些BET 蛋白可能是USP24的受質。 我們更發現USP24可能藉由其C端aa.1942-aa.2153 這個區段與溴結構域蛋白作用。 另外我們也發現溴結構域蛋白的Lysine 391/400的位置可能是被泛素化及USP24作用之處。 基於這些結果,我們推斷USP24可能藉由穩定溴結構域蛋白來穩定染色絲整修(chromatin remodeling)以及基因調控。因此我們構建了一個去除與溴結構域蛋白作用區域的USP24∆ a.a1942-2153,然後進而研究在肺癌進展中USP24與溴結構域蛋白交互作用下扮演的角色。初步結果顯示,USP24 失去了溴結構域蛋白作用區域a.a1942-2153, 會抑制細胞遷移的能力。 而由於溴結構域蛋白對於染色質相互作用,轉錄和選擇性剪接的調控非常重要,並且其與基因不穩定性和基因調控有相關,因此了解如何調節蛋白質穩定性的機制將有利於未來的癌症預防。
Ubiquitin carries out their function through attachment to the cellular protein and further alters their activity, localization and stability. Abundant of research has shown that E3 ligase and deubiquitinating enzyme are related to cancer formation and progression. In our previous studies, we elucidated Ubiquitin-specific peptidase 24 (USP24), a novel deubiquitinating enzyme, acts as multiple roles in lung cancer progression. USP24 level is decreased in the early stage of lung cancer through EGFR signalling pathway activation; however, is increased in the late stage of lung cancer through single nucleotide polymorphism (SNP) and RNA editing. Moreover, in our yeast two hybrid data, we found that USP24 might interact with multiple bromodomain-containing proteins including BRD2, BRD7 etc. In this study, we demonstrate that USP24 can interact with BRD2, BRD7 and BRG1 and further increase its protein stability by deubiquitinating. We further addressed the interacting region between USP24 and BRD2 and found that the C-terminal USP24 (aa.1942-aa.2153) could interact with the bromodomain of BRD2. Moreover, lysine 391/400 on BRD2 might be the ubiquitination as well as the USP24 targeting site. Based on these results, we suggest that USP24 might be involved in the chromatin remodelling and genes regulation through stabilizing the bromodomain-containing proteins. Hence, we constructed a truncated USP24 with deletion site at our suspected bromodomain-interacting region USP24 (a.a1941-a.a2153) and then studied the role of USP24 in interaction between USP24 and bromodomain-containing proteins in lung cancer progression. The preliminary results indicated that loss of interaction site with BETs protein in USP24 render loss of cell migration. As BRDs are important for chromatin interaction and regulation of transcription and alternative splicing and are involved in genomic instability and gene regulation, understanding the mechanism of how to regulate the protein stability will be beneficial for cancer prevention in the future.
References
Asomaning, K., Miller, D. P., Liu, G., Wain, J. C., Lynch, T. J., Su, L., & Christiani, D. C. (2008). Second hand smoke, age of exposure and lung cancer risk. Lung cancer (Amsterdam, Netherlands), 61(1), 13-20.
Bethune, G., Bethune, D., Ridgway, N., & Xu, Z. (2010). Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. Journal of Thoracic Disease, 2(1), 48-51.
Bultman, S., Gebuhr, T., Yee, D., La Mantia, C., Nicholson, J., Gilliam, A., . . . Magnuson, T. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell, 6(6), 1287-1295.
Chen, C.-L., Wang, Y., Pan, Q.-Z., Tang, Y., Wang, Q.-J., Pan, K., . . . Xia, J.-C. (2016). Bromodomain-containing protein 7 (BRD7) as a potential tumor suppressor in hepatocellular carcinoma. Oncotarget, 7(13), 16248-16261.
Chung, C.-w., Coste, H., White, J. H., Mirguet, O., Wilde, J., Gosmini, R. L., . . . Nicodeme, E. (2011). Discovery and Characterization of Small Molecule Inhibitors of the BET Family Bromodomains. Journal of Medicinal Chemistry, 54(11), 3827-3838.
Dantuma, N. P., & Bott, L. C. (2014). The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Frontiers in Molecular Neuroscience, 7, 70.
Demasi, M., & Laurindo, F. R. M. (2012). Physiological and pathological role of the ubiquitin–proteasome system in the vascular smooth muscle cell. Cardiovascular Research, 95(2), 183-193.
El-Telbany, A., & Ma, P. C. (2012). Cancer Genes in Lung Cancer: Racial Disparities: Are There Any? Genes & Cancer, 3(7-8), 467-480.
Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W. B., Fedorov, O., . . . Bradner, J. E. (2010). Selective inhibition of BET bromodomains. Nature, 468(7327), 1067-1073.
Gao, Y., Wang, B., & Gao, S. (2016). BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma. PLoS One, 11(8), e0156701.
Garg, A. V., Ahmed, M., Vallejo, A. N., Ma, A., & Gaffen, S. L. (2013). The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal, 6(278), ra44.
Gibbons, D. L., Byers, L. A., & Kurie, J. M. (2014). Smoking, p53 Mutation, and Lung Cancer. Molecular cancer research : MCR, 12(1), 3-13.
Goldberg, M., & Luce, D. (2009). The health impact of nonoccupational exposure to asbestos: what do we know? Eur J Cancer Prev, 18(6), 489-503.
Goldstraw, P., Ball, D., Jett, J. R., Le Chevalier, T., Lim, E., Nicholson, A. G., & Shepherd, F. A. (2011). Non-small-cell lung cancer. The Lancet, 378(9804), 1727-1740.
Heideker, J., & Wertz, I. E. (2015). DUBs, the regulation of cell identity and disease. Biochem J, 467(1), 191.
Helming, K. C., Wang, X., & Roberts, C. W. M. (2014). Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer cell, 26(3), 309-317.
Huang, X., & Dixit, V. M. (2016). Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Research, 26, 484.
Hussain, S., Zhang Y Fau - Galardy, P. J., & Galardy, P. J. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. (1551-4005 (Electronic)).
Jacobson, A. D., Zhang, N. Y., Xu, P., Han, K. J., Noone, S., Peng, J., & Liu, C. W. (2009). The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem, 284(51), 35485-35494.
Kadoch, C., Hargreaves, D. C., Hodges, C., Elias, L., Ho, L., Ranish, J., & Crabtree, G. R. (2013). Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet, 45(6), 592-601.
Kanno, T., Kanno, Y., Siegel, R. M., Jang, M. K., Lenardo, M. J., & Ozato, K. (2004). Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell, 13(1), 33-43.
Lantz, P. M., Mendez, D., & Philbert, M. A. (2013). Radon, Smoking, and Lung Cancer: The Need to Refocus Radon Control Policy. American Journal of Public Health, 103(3), 443-447.
Lecker, S. H., Goldberg, A. L., & Mitch, W. E. (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol, 17(7), 1807-1819.
Lee, P. N., Chamberlain, J., & Alderson, M. R. (1986). Relationship of passive smoking to risk of lung cancer and other smoking-associated diseases. British Journal of Cancer, 54(1), 97-105.
Li, W., & Ye, Y. (2008). Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci, 65(15), 2397-2406.
Li, Y., Schrodi, S., Rowland, C., Tacey, K., Catanese, J., & Grupe, A. (2006). Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat, 27(10), 1017-1023.
Lopez-Beltran, A., Cheng, L., Comperat, E., Roupret, M., Blanca, A., Menendez, C. L., & Montironi, R. (2010). Large cell undifferentiated carcinoma of the urinary bladder. Pathology, 42(4), 364-368.
Lubin, J. H., & Boice, J. J. D. (1997). Lung Cancer Risk From Residential Radon: Meta-analysis of Eight Epidemiologic Studies. JNCI: Journal of the National Cancer Institute, 89(1), 49-57.
Mastrandrea, L. D., You, J., Niles, E. G., & Pickart, C. M. (1999). E2/E3-mediated Assembly of Lysine 29-linked Polyubiquitin Chains. Journal of Biological Chemistry, 274(38), 27299-27306.
Miller, T. P., Weick, J. K., Grozea, P. N., & Carlin, D. A. (1982). Extensive adenocarcinoma and large cell undifferentiated carcinoma of the lung treated with 5-FU, vindesine, and mitomycin (FEMi): a Southwest Oncology Group Study. Cancer Treat Rep, 66(3), 553-556.
Muchardt, C., & Yaniv, M. (1999). The mammalian SWI/SNF complex and the control of cell growth. Seminars in Cell & Developmental Biology, 10(2), 189-195.
Muller, S., Filippakopoulos, P., & Knapp, S. (2011). Bromodomains as therapeutic targets. Expert Reviews in Molecular Medicine, 13, e29.
Nicodeme, E., Jeffrey, K. L., Schaefer, U., Beinke, S., Dewell, S., Chung, C. W., . . . Tarakhovsky, A. (2010). Suppression of inflammation by a synthetic histone mimic. Nature, 468(7327), 1119-1123.
Ntp. (2016). 14th Report on carcinogens. Retrieved from Research Triangle Park, NC:
Oliveira, A. M., Perez-Atayde Ar Fau - Inwards, C. Y., Inwards Cy Fau - Medeiros, F., Medeiros F Fau - Derr, V., Derr V Fau - Hsi, B.-L., Hsi Bl Fau - Gebhardt, M. C., . . . Fletcher, J. A. USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts..
Park, Y. A., Lee, J. W., Kim, H. S., Lee, Y. Y., Kim, T. J., Choi, C. H., . . . Bae, D. S. (2014). Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res, 20(3), 565-575.
Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1695(1), 55-72.
Reisman, D. N., Sciarrotta, J., Wang, W., Funkhouser, W. K., & Weissman, B. E. (2003). Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res, 63(3), 560-566.
Roy, N., Malik, S., Villanueva, K. E., Urano, A., Lu, X., Von Figura, G., . . . Hebrok, M. (2015). Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev, 29(6), 658-671.
Shain, A. H., & Pollack, J. R. (2013). The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One, 8(1), e55119.
Shang, E., Cui, Q., Wang, X., Beseler, C., Greenberg, D. A., & Wolgemuth, D. J. (2011). The bromodomain-containing gene BRD2 is regulated at transcription, splicing, and translation levels. J Cell Biochem, 112(10), 2784-2793.
Shang, E., Wang, X., Wen, D., Greenberg, D. A., & Wolgemuth, D. J. (2009). Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn, 238(4), 908-917.
Shen, M., Schmitt, S., Buac, D., & Dou, Q. P. (2013). Targeting the ubiquitin–proteasome system for cancer therapy. Expert opinion on therapeutic targets, 17(9), 1091-1108.
Strobeck, M. W., Knudsen, K. E., Fribourg, A. F., DeCristofaro, M. F., Weissman, B. E., Imbalzano, A. N., & Knudsen, E. S. (2000). BRG-1 is required for RB-mediated cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7748-7753.
Tenno, T., Fujiwara, K., Tochio, H., Iwai, K., Morita, E. H., Hayashi, H., . . . Shirakawa, M. (2004). Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells, 9(10), 865-875.
Tsume, M., Kimura-Yoshida, C., Mochida, K., Shibukawa, Y., Amazaki, S., Wada, Y., . . . Matsuo, I. (2012). Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochemical and Biophysical Research Communications, 425(4), 762-768.
von Figura, G., Fukuda, A., Roy, N., Liku, M. E., Morris Iv, J. P., Kim, G. E., . . . Hebrok, M. (2014). The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol, 16(3), 255-267.
Wang, S. A., Wang, Y. C., Chuang, Y. P., Huang, Y. H., Su, W. C., Chang, W. C., & Hung, J. J. (2017). EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene, 36(21), 2930-2945.
Wang, W., Xue, Y., Zhou, S., Kuo, A., Cairns, B. R., & Crabtree, G. R. (1996). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev, 10(17), 2117-2130.
Wang, Y., Serricchio, M., Jauregui, M., Shanbhag, R., Stoltz, T., Di Paolo, C. T., . . . McQuibban, G. A. (2015). Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy, 11(4), 595-606.
Wang, Y. C., Wang, S. A., Chen, P. H., Hsu, T. I., Yang, W. B., Chuang, Y. P., . . . Hung, J. J. Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. (1476-5594 (Electronic)).
Wang, Y. C., Wang, S. A., Chen, P. H., Hsu, T. I., Yang, W. B., Chuang, Y. P., . . . Hung, J. J. (2016). Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene, 35(28), 3669-3680.
Westcott, P. M. K., & To, M. D. (2013). The genetics and biology of KRAS in lung cancer. Chinese Journal of Cancer, 32(2), 63-70.
Wong, A. K., Shanahan, F., Chen, Y., Lian, L., Ha, P., Hendricks, K., . . . Lees, E. (2000). BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res, 60(21), 6171-6177.
Xiong, Y., Li, W., Shang, C., Chen, R. M., Han, P., Yang, J., . . . Chang, C. P. (2013). Brg1 governs a positive feedback circuit in the hair follicle for tissue regeneration and repair. Dev Cell, 25(2), 169-181.
Zappa, C., & Mousa, S. A. (2016). Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res, 5(3), 288-300.
Zhao, B., Song, W., Chen, Y. P., Huang, R., Chen, K., Cao, B., . . . Shang, H. F. (2012). Association analysis of single-nucleotide polymorphisms of USP24 and USP40 with Parkinson's disease in the Han Chinese population. Eur Neurol, 68(3), 181-184.
Zhao, B., Song W Fau - Chen, Y. P., Chen Yp Fau - Huang, R., Huang R Fau - Chen, K., Chen K Fau - Cao, B., Cao B Fau - Yang, Y., . . . Shang, H. F. Association analysis of single-nucleotide polymorphisms of USP24 and USP40 with Parkinson's disease in the Han Chinese population. (1421-9913 (Electronic)).
Zhao, G. Y., Lin, Z. W., Lu, C. L., Gu, J., Yuan, Y. F., Xu, F. K., . . . Ding, J. Y. (2015). USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma. Tumour Biol, 36(3), 1721-1729.