簡易檢索 / 詳目顯示

研究生: 楊祺安
Yang, Ci-An
論文名稱: 過渡金屬二硫化物與鈦酸鍶之扭角異質結構
Twisted Heterostructures of Transition Metal Dichalcogenides and Strontium Titanates
指導教授: 楊展其
Yang, Jan-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 過渡金屬硫化物鈦酸鍶扭角異質結構
外文關鍵詞: transition metal dichalcogenides, strontium titanate, twisted heterostructure
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料做為現今熱門固態物理研究主題之一,具有相當大的潛力,
    本論文透過二維材料與複雜性氧化物的結合,期望觀察到莫爾超晶格的
    物理性質,開創新的研究領域。本研究利用化學氣相沉積法成長過渡金屬
    二硫化物,並將其互相堆疊,轉移到鈦酸鍶基板上,製作二硫化鎢/二硫
    化鉬、二硫化鎢(二硫化鉬)/鈦酸鍶兩種扭角異質結構,透過拉曼光譜、光
    致發光光譜以及二倍頻諧波,研究因其上下層之間的距離不同而變化的
    物理性質。在研究中發現過渡金屬硫化物在鈦酸鍶(111)晶面上以不同角
    度堆疊時,其拉曼光譜及光致發光光譜皆不與堆疊角度成週期性變化,推
    測原因為鈦酸鍶表面的晶格沒有讓過渡金屬硫化物嵌入的空缺,以致於
    二維材料與鈦酸鍶基板的距離不會隨扭角做改變,因此兩者的交互作用
    不隨著角度變化。對於過渡金屬硫化物與複雜性氧化物的結合,還有更多
    的知識可以去探討。

    Two-dimensional materials have caught significant attention as one of the most
    popular research topics in solid-state physics over the past decade. In this thesis,
    through the combination of two-dimensional materials and complex oxides, we
    expect to observe the intriguing physical properties caused by the intra-layer
    Moiré superlattices.
    In this work, transition metal dichalcogenides (TMDCs) were grown by
    chemical vapor deposition (CVD). The grown TMDCs were then transferred
    onto strontium titanate(SrTiO3, STO) substrates to construct tungsten disulfide
    (WS2)/molybdenum disulfide(MoS2), WS2(MoS2)/STO twisted
    heterostructures. The combination of Raman spectroscopy, photoluminescence
    spectroscopy (PL) and second harmonic generation(SHG) has been employed
    to study the physical properties of the twisted heterostructures. Based on the
    experimental results, we found that when TMDCs are stacked on STO(111)
    with different twist angles, their Raman spectra and PL spectra do not change
    periodically with twist angles. We speculate that the main reason is the
    atomically-flat top surface of STO substrate has no kink edges to allow
    interlayer repulsion/attraction with TMDCs. As a result, neither the interlayer
    distance nor the intralayer coupling between TMDCs and STO substrate
    changes with different twist angles. In the near future, more efforts shall be paid
    to artificially enhance the coupling between 2D materials and complex oxides.

    摘要 I Twisted Heterostructures of Transition Metal Dichalcogenides and Strontium Titanates II 總目錄 XIII 圖目錄 XV 第一章. 緒論 1 第二章. 文獻回顧 2 2.1. 二維材料簡介 2 2.2. WS2與MoS2物理性質簡介 4 2.3. WS2、MoS2扭角同質結構(WS2、MoS2 Twisted Homostructure) 11 2.4. WS2/MoS2扭角異質結構(WS2/MoS2 Twisted Hetrostructure) 15 2.5. SrTiO3物理性質簡介 22 第三章. 實驗原理與方法 24 3.1. 化學氣相沉積系統(Chemical Vapor Deposition, CVD) 24 3.2. 掃描式探針顯微技術(Scanning Probe Microscopy, SPM) 26 3.3. 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 28 3.4. 拉曼光譜儀系統(Raman Spectrum System) 30 3.5. 光致發光光譜儀系統(Photoluminescence Spectrum System) 33 3.6. 二倍頻諧波產生量測(Second harmonic generation, SHG) 34 第四章. 實驗結果與討論 38 4.1. WS2及MoS2製程及物性檢測 38 4.2. 轉移手法介紹 42 4.3. WS2/MoS2之扭角異質結構(WS2/MoS2 Twisted Heterostructure) 43 4.4. WS2/STO(111)、MoS2/STO(111)扭角異質結構 45 4.5. 實驗結果討論 56 第五章. 結論 62 參考文獻 63

    1. K. Novoselov0et al. (2004): "Electric Field Effect in Atomically Thin Carbon Films". Science, 306(5696), p. 666-669.
    2. L. Lui et al. (2003): "Structural and electronic properties of h-BN". Physical Review B, 68(10), 104102.
    3. Y. Gogotsi. et al. (2019): "The Rise of MXenes". ACS Nano, 13(8), p. 8491-8494.
    4. J. H. Kim et al. (2019): "Mechanical properties of two-dimensional materials and their applications". Journal of Physics D: Applied Physics, 52(8), 083001.
    5. J. W. You et al. (2018): "Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects". Nanophotonics, 8(1), p. 63-97.
    6. Z. Yu et al. (2017): "Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide MoS2 Field-Effect Transistors". Advanced Functional Materials, 27(19), 1604093.
    7. V. Kaushik et al. (2020): "Charge Transport in 2D MoS2, WS2, and MoS2–WS2 Heterojunction-Based Field-Effect Transistors: Role of Ambipolarity". The Journal of Physical Chemistry C, 124(42), p. 23368-23379.
    8. H. Li et al. (2015): "Emerging energy applications of two-dimensional layered transition metal dichalcogenides". Nano Energy, 18, p. 293-305.
    9. B. Radisavljevic et al. (2011): "Single-layer MoS2 transistors". Nature Nanotechnology, 6(3), p. 147-150.
    10. G. Z. Magda et al. (2015): "Exfoliation of large-area transition metal chalcogenide single layers". Scientific Report, 5, 14714.
    11. J. Chen et al. (2016): "Chemical Vapor Deposition of High-Quality Large-Sized MoS2 Crystals on Silicon Dioxide Substrates". Advanced Science, 3(8), 1500033.
    12. S. Li et al. (2015): "Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals". Applied Materials Today, 1(1), p. 60-66.
    13. A. V. Kolobov and J. Tominaga (2016): "Two-dimensional transition-metal dichalcogenides". Switzerland, Springer.
    14. H. Zeng et al. (2013): "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides". Scientific Report, 3, 1608.
    15. R. Luo et al. (2020): "Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions". Nature Communications, 11(1), 1011.
    16. C. Cong et al. (2018): "Optical Properties of 2D Semiconductor WS2". Advanced Optical Materials, 6(1), 1700767.
    17. K. F. Mak et al. (2010): "Atomically thin MoS2: a new direct-gap semiconductor". Physical Review Letters, 105(13), 136805.
    18. H. Terrones et al. (2013). "Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides". Scientific Report, 3, 1549.
    19. A. Splendiani et al. (2010): "Emerging photoluminescence in monolayer MoS2". Nano Letters, 10(4), p. 1271-1275.
    20. D. Erben et al. (2018): "Excitation-induced transition to indirect band gaps in atomically thin transition-metal dichalcogenide semiconductors". Physical Review B, 98, 035434.
    21. Y. Cao et al. (2018): "Unconventional superconductivity in magic-angle graphene superlattices". Nature, 556, p. 43-50.
    22. F. Wu et al. (2017): "Topological Exciton Bands in Moire Heterojunctions". Physical Review Letters, 118(14): 147401.
    23. S. Zheng et al. (2015): "Coupling and Interlayer Exciton in Twist-Stacked WS2 Bilayers". Advanced Optical Materials, 3(11), p. 1600-1605.
    24. R. Debnath et al. (2020): "Evolution of high-frequency Raman modes and their doping dependence in twisted bilayer MoS2". Nanoscale, 12(33), p. 17272-17280.
    25. W. Yan et al. (2019): "Probing Angle-Dependent Interlayer Coupling in Twisted Bilayer WS2". The Journal of Physical Chemistry C, 123(50), p. 30684-30688.
    26. Z. Wang et al. (2015): "Electronic Structure of Twisted Bilayers of Graphene/MoS2 and MoS2/MoS2". The Journal of Physical Chemistry C, 119(9), p. 4752-4758.
    27. K. Liu et al. (2014): "Evolution of interlayer coupling in twisted molybdenum disulfide bilayers". Nature Communications, 5, 4966.
    28. L. Wu et al. (2021): "Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer". Nano Research, 14(7), p. 2215-2223.
    29. B. Chakraborty et al. (2012): "Symmetry-dependent phonon renormalization in monolayer MoS2 transistor". Physical Review B, 85(16), 161403.
    30. K. F. Mak et al. (2013): "Tightly bound trions in monolayer MoS2." Nature Materials, 12(3), p. 207-211.
    31. J. Zhang et al. (2016): "Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures." Advanced Materials, 28(10), p. 1950-1956.
    32. M. Tebyetekerwa et al. (2021): "Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers". Cell Reports Physical Science, 2(8), 100509.
    33. A. J. H. Jones et al. (2021): "Visualizing band structure hybridization and superlattice effects in twisted MoS2/WS2 heterobilayers". 2D Materials, 9(1), 015032.
    34. P. Chen et al. (2018): "Epitaxial Growth of Monolayer MoS2 on SrTiO3 Single Crystal Substrates for Applications in Nanoelectronics". ACS Applied Nano Materials, 1(12), p. 6976-6988.
    35. M. Saghayezhian et al. (2016): "Polar compensation at the surface of SrTiO3(111)". Physical Review B, 93(12), 125408.
    36. Y. B. Pottathara et al. (2019): "Synthesis and Processing of Emerging Two-Dimensional Nanomaterials". Nanomaterials Synthesis, 7, p. 1-25.
    37. P. R. Sonami et al. (2006): "Planer nano-graphenes from camphor by CVD". Chemical Physics Letters, 430(1-3), p. 56-59.
    38. A. J. Pollard et al. (2009): "Formation of Monolayer Graphene by Annealing Sacrificial Nickel Thin Films". The Journal of Physical Chemistry C, 113(38), p. 16565-16567.
    39. K. K. Liu et al. (2012): "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates". Nano Letters, 12(3), p. 1538-44.
    40. X. Fan et al. (2017): "Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics". Nanoscale, 9(21), p. 7235-7241.
    41. W. T. Hsu et al. (2014): "Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers". ACS Nano, 8(3), p. 2951-2958.
    42. S. Boandoh et al. (2022): "Ultrafast Pump–Probe Microscopy on 2D Transition Metal Dichalcogenides". Advanced Photonics Research, 3(8), 2200046.
    43. J. Shang et al. (2015): "Observation of Excitonic Fine Structure in a 2D Transition Metal Dichalcogenide Semiconductor". ACS Nano, 9(1), p. 647-655.
    44. R. Zhao et al. (2013): "A study on surface symmetry and interfacial enhancement of SrTiO3 by second harmonic generation". Science China Physics, Mechanics and Astronomy, 56(12), p. 2370-2376.
    45. Y. Lin et al. (2014): "Dielectric screening of excitons and trions in single-layer MoS2". Nano Letters, 14(10), p. 5569-5576.
    46. C. Huang et al. (2021): "Single-Layer MoS2 Grown on Atomically Flat SrTiO3 Single Crystal for Enhanced Trionic Luminescence". ACS Nano, 15(5), p. 8610-8620.
    47. G. T. Forcherio et al. (2017): "Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping". AIP Advances, 7, 075103.

    下載圖示 校內:2024-08-30公開
    校外:2024-08-30公開
    QR CODE