簡易檢索 / 詳目顯示

研究生: 徐萩驊
Syu, Chiu-Hua
論文名稱: 高效能表面增顯拉曼活性基板用於微量農藥殘留檢測
High Performance Surface Enhanced Raman Scattering Substrate for Trace Detection of Pesticides Residue
指導教授: 廖峻德
Liao, Jiunn-Der
共同指導教授: 劉浩志
Liu, Bernard Haochih
王士豪
Wang, Shyh-Hau
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 表面增顯拉曼散射奈米壓痕聚焦離子束農藥
外文關鍵詞: Surface-enhanced Raman scattering, Nanoindentation, Focused ion beam (FIB), Pesticides
相關次數: 點閱:199下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將使用物理性製程方法製作SERS活性基板,嘗試以不同之農藥進行SERS光譜量測,以定義個別農藥之指紋圖譜。表面增強基底使用兩種不同製程之基板,一個是使用奈米壓痕試驗機搭配三角錐型探針(Berkovich tip)以單一加載-卸載模式(loading-unloading mode)進行表面增顯拉曼散射基板之製作;另一種是利用聚焦離子束製作微奈米柱陣列,選用金銀做為增顯材料。在檢測R6G的研究中,選用不同雷射波長,其結果顯示:奈米壓痕之基板於633奈米波長之氦氖雷射具有最佳增顯效果,奈米柱基板則為785奈米波長之二極體雷射具最佳增顯效果。於SERS效應基板進行拉曼增顯光譜之量測並計算評估其增顯係數,金銀微奈米柱陣列之增顯因子為7.25×106;奈米壓痕孔洞結構陣列則為2.9×106。接著以增顯效果較佳之金銀微奈米柱陣列基板檢測四種農藥,分別為百滅寧(Permethrin)、賽滅寧(Cypermethrin)、加保利(Carbaryl)及益滅松(Phosmet)。
    在檢測農藥的實驗中,其百滅寧及賽滅寧之檢測測極限可達10-8 M,加保利及益滅松之檢測極限均為10-7 M。在混和實驗中,利用金銀微奈米柱結構之基板,成功地在同一光譜上獲得混合農藥之成分資訊。最後檢測水果的實驗中,利用個別官能基清楚辨識出四種不同種類之農藥。以上成果顯示奈米柱結構之基板在表面增顯拉曼散射技術之檢測上是非常有前景且具有很大的潛力,特別適用於快速篩檢及辨識極少量的拉曼活性分子探針以及農藥。

    We obtain the SERS spectra of pesticides on SERS substrates and demonstrated the feasibility of SERS for pesticide analysis. A focused ion beam and nanoindentation were used to fabricate a SERS substrate with nanorod and nanocavity arrays. The SERS-active substrate was evaluated using rhodamine 6G as a probe molecule at low concentration with various Raman laser wavelengths. In addition, the optimized nanorod samples exhibited a strong SERS effect, with the enhancement factor reaching 7.25×106. SERS spectra of four types of pesticide (permethrin, cypermethrin, carbaryl, and phosmet) on nanorod substrates were obtained. The calculated limit of detection was 10-8 for permethrin and cypermethrin. When the four pesticides were mixed, their characteristic peaks could still be identified from the SERS spectrum of the mixture. By using the NR array as a SERS-active substrate, pesticides in fruits can be detected. The results show that the NR array has high potential as a characterization tool for the fast detection of very small quantities of Raman-active molecular probes or target species.

    摘要 II Extended Abstract III 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 現有量測方法 2 1.3 研究動機 2 1.4 研究目的 3 第二章 理論基礎與文獻回顧 5 2.1 振動光譜 5 2.2 拉曼光譜基本理論 6 2.2.1 拉曼散射原理 6 2.2.2 拉曼光譜之極化誘發理論 8 2.3 表面增顯拉曼散射光譜 10 2.3.1 表面電漿(surface plasmon) 11 2.3.2 奈米結構之幾何形狀與大小對表面增顯拉曼散射之影響 12 2.3.3 奈米級金銀成分比例調整表面電漿子共振之應用 16 2.3.4 化學效應 18 2.4 農藥之表面增顯拉曼散射檢測分析 19 第三章 實驗材料與方法 22 3.1 實驗設計與流程 22 3.2 實驗材料與方法 23 3.2.1 基板清洗 23 3.2.2 以電子束蒸鍍機進行薄膜製備 23 3.2.4 溶液製備 24 3.2.5 拉曼檢測與訊號處理 26 3.2.6 訊號處理 26 3.3 製程儀器 27 3.3.1 電子束蒸鍍機 27 3.3.2 奈米壓痕試驗機/奈米三維量測儀 27 3.3.3 雙束型聚焦離子束 28 3.4 分析儀器 30 3.4.1 掃描式電子顯微鏡 30 3.4.2 顯微拉曼光譜儀 31 第四章 SERS活性基板應用於分子探針之研究 33 4.1 表面形貌之探討 33 4.1.1 奈米壓痕金孔洞陣列基板之表面形貌及微結構 33 4.1.2 奈米柱陣列基板之表面形貌及微結構 34 4.2 奈米孔洞及奈米柱陣列之SERS效應評估 35 4.2.1 顯微拉曼光譜量測之正規化 35 4.2.2 SERS效果與增顯因子之評估 37 4.2.3 雷射波長對於基板之選擇性 40 第五章 SERS活性基板應用於定性與定量分析農藥之效能評估 44 5.1 農藥樣品確認SERS活性基板之檢測極限 44 5.2 農藥之SERS機制與其官能基分析 48 5.3 SERS活性基板應用於多成分農藥之分析 51 5.4 SERS活性基板應用於水果之即時檢測 52 結論 55 未來展望 56 參考文獻 57

    [1] C. Pope, “ Organophosphorus pesticides: do they all have the same mechanism of toxicity? ”, Journal of Toxicology and Environmental Health Part B, March, Vol. 2, 161-181, 1999.
    [2] K. M. Somayyeh and A. Mohammad, “Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. ”, Human&Experimental Toxicology, Vol. 30, 1119-1140, 2011.
    [3] W. Li, B. Lu, A. Sheng, F. Yang, and Z. Wang, “ Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin”, Journal of Molecular Structure, Vol. 981, 194–203, 2010.
    [4] W. Li, B. Lu, F. Chen, F. Yang, and Z. Wang, “Host–guest complex of cypermethrin with b-cyclodextrin: A spectroscopy and theoretical investigation”, Journal of Molecular Structure, Vol. 990, 244–252, 2011.
    [5] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, and L. Guo, “Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables”, American Chemical Society, Vol. 88, 2149−2155, 2016.
    [6] D. W. Li, W. L. Zhai, Y. T. Li, and Y. T. Long, “Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants”, Microchimica Acta , Vol. 181, 23–43, 2014.
    [7] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, “Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique”, The Royal Society of Chemistry, Vol. 139, 5148–5154, 2014.
    [8] M. J. Bonholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy”, Chemical Society Reviews, Vol. 37, 885-897, 2008.
    [9] M. D. Li, Y. Cui, M. X. Gao, J. Luo, B. Ren, and Z. Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane”, Analytical Chemistry, Vol. 80, 5118-5125, 2008.
    [10] A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, “Raman spectroscopy”, Analytical Chemistry, Vol. 70, 341-362, 1998.
    [11] K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture”, Journal of Microbiological Methods, Vol. 42, 29-38, 2000.
    [12] M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, “Micro-Raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions”, The Analyst, Vol. 130, 1543-1550, 2005.
    [13] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics”, Journal of Physics: Condensed Matter, Vol. 14, 597-624, 2002.
    [14] P. K. A. Campion, “Surface-enhanced Raman scattering”, Chemical Society Reviews, Vol. 27, 241-250, 1998.
    [15] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science, Vol. 275, 1102-1106, 1997.
    [16] R. A. Tripp, R. A. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing”, Nano Today, Vol. 3, 31-37, 2008.
    [17] J. C. B. Richard and J. T. M. Martin, “Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS)”, Journal of Raman Spectroscopy, Vol. 39, 1313-1326, 2008.
    [18] K. Hering, D. Cialis, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics”, Analytical and Bioanalytical Chemistry, Vol. 390, 113-124, 2008.
    [19] B. Sepveda, C. Angelom Paula, L. M. Lechuga, and L. M. Liz-Marz, “LSPR-based nanobiosensors”, Nano Today, Vol. 4, 244-251, 2009. optical probe in molecular biophysics and biomedicine," Theoretical Chemistry Accounts, Vol. 125, 319-327, 2010.
    [20] Y. Du, L. Shi, T. He, X. Sun, and Y. Mo, “SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminum oxide template”, Applied Surface Science, Vol. 255, 1901-1905, 2008.
    [21] K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays”, Nanotechnology, Vol. 19, 145305, 2008.
    [22] J. Fang, Y. Yi, B. Ding, and Xi. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern”, Applied Physics Letters, Vol. 2, 131115, 2008.
    [23] B. Yan, A. Thubagere, W. R. Premasiri, Z. L. D. iegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays”, ACS Nano, Vol. 3, 1190-1202, 2009.
    [24] J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication”, Accounts of Chemical Research, Vol. 39, 249-257, 2006.
    [25] B. Cui, L. Clime, K. Li, and T. Veres, “Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy”, Nanotechnology, Vol. 19, 145302, 2008.
    [26] G. Keresztury, “Raman spectroscopy: theory, handbook of vibrational spectroscopy”, John Wiley & Sons, Vol. 1, 71, 2001.
    [27] P. R. Griffiths, “Introduction of vibrational spectroscopy, Handbook of Vibrational Spectroscopy”, John Wiley&Sons, Vol. 1, 33, 2001.
    [28] 汪建民,「材料分析」,中國材料科學學會,73-82,1998。
    [29] 李冠卿,「表面強化拉曼散射」,物理雙月刊,5 期4 卷,185,1983。
    [30] 謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7 期1 卷,25,1985。
    [31] Skoog and H. Nieman, “Raman spectroscopy, principles of instrumental analysis 5/e”, Harcourt Brace & Company, 429-430, 1998.
    [32] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chemical Physics Letters, Vol. 26, 163-166, 1974.
    [33] J. R. F. a. K. Nakamoto, "Introduction Raman spectroscopy," Academic Press,Vol. 1-25, 1994.
    [34] L. R. a. McCreery, "Raman spectroscopy for chemical analysis," New York: Wiley Interscience, vol. 157, 2000.
    [35] D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, Journal of Electroanalytical Chemistry, Vol. 84, 1-20, 1977.
    [36] 吳民耀,劉威志,「表面強化拉曼散射」,物理雙月刊,2 期4 卷,486-495,2006。
    [37] A. Otto, “In light scattering in solids IV. electronic scattering, spin effects, SERS and morphic effects”, Sptinger-Verlag, Vol. 289, 1984.
    [38] R. Z. Tan, A. Agarwal, N. Balasubramanian, D. L. Kwong, Y. Jiang, E. Widjaja, and M. Garland, “3D arrays of SERS substrate for ultrasensitive molecular detection”, Sensors and Actuators A, Vol. 139, 36-41, 2007.
    [39] U. Huebner, R. Boucher, H. Schneidewind, D. Cialla, and J. Popp, “Microfabricated SERS-arrays with sharp-edged metallic nanostructures”, Microelectronic Engineering, Vol. 85, 1792-1794, 2008.
    [40] C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence”, Analytical Chemistry, Vol. 77, 3261-3266, 2005.
    [41] B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays”, Advanced Materials, Vol. 20, 1129-1134, 2008.
    [42] Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays”, Nano Letters, Vol. 8, 1923-1928, 2008.
    [43] J.J. Feng, U. Gernert, M. Sezer, U. Kuhlmann, D.H. Murgida, C. David, M. Richter, A. Knorr, P. Hildebrandt, and I. M. Weidinger, “Novel Au-Ag Hybrid Device for Electrochemical SE(R)R Spectroscopy in a Wide Potential and Spectral Range”, Nano letters, Vol. 9(1), 298-303, 2008.
    [44] S. Kim, S. K. Kim, and S. Park, “Bimetallic Gold-Silver Nanorods Produce Multiple Surface Plasmon Band”, Journal of the American Chemical Society, Vol. 131(24), 8380-8381, 2009.
    [45] M. Moskovits, K. Kneipp, and H. Kneipp, “Surface-enhanced Raman scattering: physics and applications”, Springer, Vol.197-198, 2006.
    [46] J. Hao, Q. K. Wang, W. Weimer, J. Abell, and M. Wilson, “SERS Spectra of Permethrin on Silver Nanofilm ”, American Journal of Nano Research and Application, Vol. 3(1-1), 29-32, 2015.
    [47] P. Limnonthakula, S. Limwichean, P. Eiamchai, M. Horprathum, A. Supatti, N. Nuntawong, V. Patthanasetakul, and P. Chindaudom, “Vertically Aligned Ag Nanorod Arrays for Trace Cypermethrin Detection”, Advanced Materials Research, Vol. 979, 259-262, 2014.
    [48] L. Wu, Z. Wang and B. Shen, “Large-scale gold nanoparticle super lattice and its SERS properties for the quantitative detection of toxic Carbaryl”, The Royal Society of Chemistry, Vol. 5, 5274, 2013.
    [49] B. Liu, P. Zhou, X. Liu, X. Sun, H. Li, and M. Lin, “Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures”, Food Bioprocess Technol, Vol. 6, 710–718, 2013.
    [50] C. W. Chang, J. D. Liao, Y. Y. Lin, and C.C. Weng, “Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect”, Sensors and Actuators B:Chemical, Vol. 153,271–276, 2011.
    [51] N. M. Perney, F. J. G. d. Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Chatlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering”, Physical Review B, Vol. 76, 035426, 2007.
    [52] L. Guo, X. Zhang, Z. Du, Y. Huang, and Y. Mo, “The Charge Transferring between Silver Nanoparticles and R6G , “ Spectroscopy and Spectral Analysis, Vol. 21, 16-18, 2001.
    [53] C. W. Chang, J. D. Liao, A. L. Shiau, and C. K. Yao, “Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate, “Sensors and Actuators B, Vol. 156, 471–478, 2011.
    [54] K. Sivashanmugana, J. D. Liao, J. W. You, and C. L. Wu, “Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection, “Sensors and Actuators B, Vol. 181, 361– 367, 2013.

    無法下載圖示 校內:2021-06-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE