簡易檢索 / 詳目顯示

研究生: 張祥傑
Chang, Shyang-Jye
論文名稱: IC封裝黏模力之量測與分析
Measurement and Analysis of Adhesion Force on IC Encapsulation Mold
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 129
中文關鍵詞: IC 構裝黏著力黏著效應
外文關鍵詞: Adhesion Effects, Adhesion Force, IC Packaging
相關次數: 點閱:94下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在電子IC構裝封膠製程中,封膠材料(EMC;Epoxy Molding Compound)在熟化成型過程中會與IC模具表面產生黏著的現象,稱之為黏著效應(Adhesion Effects);而此黏著效應對於脫模作業過程會有所影響,甚至可能會造成封膠失敗、可靠度不佳與生產良率降低等結果。對於模具而言,黏著效應會造成產品脫模不易而影響產品的品質。所以如何在不影響現有模具設計前提下,能夠藉由適當的表面處理以及鍍膜選擇,來有效改善封裝生產線產能,是目前產業界及研究單位所重視的主題。
      本論文針對此黏著效應,自行研發一套電子構裝黏著力的量測技術,用來量測膠體與模具表面之間的正向與剪向黏模力。本研究配合田口氏實驗設計法,針對影響IC封裝模具與塑料膠體間黏著力可控制之重要製程參數進行因子效應的研究,進而得知各製程參數控制因子對黏著效應的關係,其中模具的表面處理對黏模效應的貢獻度最大。此外,藉由觀察黏著力量變化的趨勢,希望可以找出黏著效應發生的原因,確實掌握清模時機,進而增加產能,解決黏模問題,以減少黏著效應所產生的不良影響。
    關鍵詞:IC構裝、黏著效應、黏著力

      In IC packaging, when epoxy molding compound (EMC) is filling the mold cavity and cured in the mold, adhesion occurs in the interface between EMC and mold surface. Too large an adhesion force can damage an IC and lower the yield rate. Many parameters will affect the mold adhesion force. However, there was no report showing how to measure the mold adhesion force and discussing the effect of process parameters on the mold adhesion force.
      This paper described the design and fabrication of an automatic EMC adhesion force test instrument that will measure adhesion force between mold surface and EMC. Several important parameters that affect the mold adhesion force in IC packaging process were also discussed in this paper. A series of experiments were done using the EMC adhesion force test instrument designed by ourselves. By using Taguchi’s method, one can determine what parameters are important for reducing the magnitude of adhesion force between EMC and mold surface.

    Keyword: EMC, Mold Adhesion Force, Taguchi's Parameter Design

    目 錄 摘 要...............................IV Abstract.............................V 誌 謝...............................VI 目 錄..............................VII 表 目 錄............................ X 圖 目 錄.......................... XII 第一章 緒論..........................1 1-1 前言.............................1 1-2 電子構裝製程簡介 ................4 1-3 封裝模具黏著效應簡介.............6 1-4 文獻回顧.........................9 1-5 研究目的........................16 1-6 本文架構........................18 第二章 理論基礎.....................19 2-1 封膠材料(EMC)固化反應過程.....19 2-2 正向黏著強度量測原理............22 2-3 剪向黏著強度量測原理............25 2-4 黏著強度與黏模力................27 2-5 黏著理論........................29 2-6 類比/數位(A/D)訊號轉換........32 2-7 伺服控制原理....................35 第三章 正向與剪向黏模力的量測.......36 3-1 正向黏模力量測設備..............36 3-1.1 設計規範......................37 3-1.2 模具單元及量測機構............37 3-2 黏著效應實驗....................42 3-2.1 田口氏實驗計畫................42 3-2.2 黏著效應連續實驗..............49 3-3 正向量測設備的檢討與改進........55 3-4 剪向黏模力量測設備..............58 3-5 實驗結果........................64 3-5.1 剪向黏著力測試................64 3-5.2 正向黏著力測試................65 3-6 剪向量測設備的檢討與改進........67 第四章 布丁模剪力測試機.............70 4-1 量測方法與流程..................70 4-1.1 量測規範......................70 4-1.2 模具單元......................72 4-1.3 測試流程......................74 4-2 設備的組立與控制系統............77 4-2.1 設計規範......................77 4-2.2 零組件的介紹與選用............78 4-2.3 系統組立......................90 4-2.4 控制系統......................97 4-3 實驗設備的測試.................102 4-3.1 實際灌膠測試.................102 4-3.2 實驗數據的重現性.............107 4-3.2 測試結果分析.................112 4-4 田口氏實驗計畫.................114 第五章 結論與未來發展..............120 5-1 結論...........................120 5-2 未來發展.......................123 參考文獻...........................124 自 述..............................129

    參考文獻
    [1]“Standard Test Method for Apparent Shear Strength of Single-Lap-Joint
    Adhesively Bonded Metal Specimens by Tension Loading,” STD. ASTM D1002-94.
    [2]“Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive
    Bonds,” STD. ASTM D1062-96.
    [3]“Standard Test Method for Tensile Properties of Adhesive Bonds,” STD. ASTM
    D897-95a.
    [4]“Standard Test Method for Strength Properties of Metal-to-Metal Adhesives by
    Compression Loading (Disk Shear),” STD. ASTM D2182-72.
    [5]“Standard Recommended Practice for Determining the Strength of Adhesively
    Bonded Plastic Lap-Shear Sandwich Joint in Shear by Tension Loading,” STD.
    ASTM D3164-73.
    [6] B. A. Chapman, H. D. DeFord, G. P. Wirtz and S. D. Brown, in: Technology of
    Glass, Ceramic, or Glass-Ceramic to Metal Sealing, W. E. Moddeman, C. W.
    Merten and D. P. Kramer (Eds), MD-Vol. 4,pp. 77-87. American Society of
    Mechanical Engineers, New York (Copyright 1987).
    [7]“Test Method for Measurement of Adhesive Strength Between Leadframes and
    Molding Compounds,” STD. SEMI G69-0996, (1996).
    [8] Samuel Kim, “The Role of Plastic Package Adhesion in Performance,” IEEE
    Transaction on Components, Hybrids, and Manufacturing Technology, vol. 14,
    no. 4, pp. 809-295 (1991).
    [9] Minjin Ko, Myungwhan Kim, Dongsuk Shin, Yongjoon Park, Myungsun Moon, Inhee
    Lim, “Investigation on the Effect of Molding Compounds on Package
    Delamination,” 1997 Electronic Components and Technology Conference, pp.
    1242-1247 (1997).
    [10] Xiang Dai, Mark V. Brillhart, Paul S. Ho, “Polymer Interfacial Adhesion in
    Microelectronic Assemblies,” 1998 Electronic Components and Technology
    Conference, pp. 132-137 (1998).
    [11] Naotaka Tanaka, Makoto Kitano, Tetsuo Kumazawa, Asao Nishimura, “Evaluation
    IC-Package Interface Delamination by Considering Moisture-Induced
    Molding-Compound Swelling,” IEEE Transaction on Components and Packaging
    Technology, vol. 22, no. 3, pp. 426-432 (1999).
    [12] R. Balkova, S. Holcnerova, V. Cech, “Testing of Adhesion for Bonding of
    Polymer Composites,” International Journal of Adhesion & Adhesives, vol.
    22, pp. 291-295 (2002).
    [13] Terry L. Gordon, Martin E. Fakley, “The Influence of Elastic Modulus on
    Adhesion to Thermoplastics and Thermoset Materials,” International Journal
    of Adhesion & Adhesives, vol. 23, pp. 95-100 (2003).
    [14] 王俊祥, ”電子封裝黏模效應之量測技術開發與研究,” 國立成功大學機械工程研究所
    碩士論文 (2000).
    [15] 莊俊華, ”IC構裝黏模測試機之設計與製造,” 國立成功大學工程科學研究所碩士論文
    (2001).
    [16] 朱言主, ”IC封裝模具黏著效應之研究,” 國立成功大學工程科學研究所碩士論文
    (2002).
    [17] 林俊宏, ”EMC與金屬介面剪向黏著力試驗機台之研發,” 國立成功大學工程科學研究
    所碩士論文 (2003).
    [18] Masaki Yoshii, Yoshihiro Mizukami, Hideo Shoji, “Evaluation Technologies on
    Moldability of Epoxy Molding Compounds for Encapsulation of
    Semiconductors,” 日立化成テクニカルレポート, no. 40, pp. 13-20 (2003).
    [19] R. J. Good, “Treatise on Adhesion and Adhesives,” Vol. 1, R. L. Partick,
    ed., MARCEL DEKKER INC (1967).
    [20] 韓錦鈴, “環氧樹脂及聚胺脂交聯環氧樹脂之研究,” 國立台灣大學材料科學研究所博
    士論文 (1993).
    [21] Matsumoto, A. and M. Oiwa,”Studies of Polymerization of Diallyl Compounds.
    VII. Kinetics of the Polymerization of Diallyl Esters of Aliphatic
    Dicarboxylic Acids,” J. Appl. Polym. Sci., vol. 17, pp. 2415 (1973).
    [22] Son, P. N. and C. D. Weber, “Selectivity and Kinetics of Epoxy
    Resin-Bisphenol A Reaction Catalyzed by Certain Guanidine Derivatives,” J.
    Appl. Sci., vol. 17, pp. 2415 (1973).
    [23] Babaylvsky, P. G. “Epoxy Thermosetting Systems: Dynamic Mechanical Analysis
    of the Reactions of Aromatic Diamines with the Diglycidyl Ether of Bisphenol
    A,” J. Appl. Polym. Sci., vol. 17, pp. 2067 (1973).
    [24] Lee, W. A. “Study of Cure of Epoxy Resins by Torsional Braid Analysis,”
    Brit. Polym. J., vol. 15, pp. 40 (1983).
    [25] Horie, K. “Calorimetric Investigation of Polymerization Reactions III.
    Curing Reaction of Epoxides with Amines,” J. Polym. Sci., A-1, vol. 8, pp.
    1357 (1970).
    [26] Willard, P. E. “Determination of Cure of Diallyl Phthalate Using
    Differential Scanning Calorimetry,” Polym. Eng. Sci., vol. 12, pp. 120
    (1972).
    [27] Kamal, M. R. “Kinetics and Thermal Characterization of Thermoset Cure,”
    Polym. Eng. Sci., vol. 13, pp. 59 (1973).
    [28] Prime, R. B. “Differential Scanning Calorimetry of the Epoxy Cure
    Reaction,” Polym. Eng. Sci., vol. 13, pp. 365 (1973).
    [29] Dusek, K. and M. Bleha, “Curing of Epoxide Resins: Model Reaction of Curing
    with Amine,” J. Polym. Sci., Polym. Chem. Ed., vol. 15, pp. 2393 (1979).
    [30] Moroni, A., J. Mijovic, E. M. Pearce, and C. C. Foun, “Cure Kinetics of
    Epoxy Resins and Aromatic Diamines,” J. Appl. Polym. Sci., vol. 32, pp.
    3761 (1986).
    [31] Pusatcioglu, S. Y., A. L. Fricke and J. C. Hassler, “Hests of Reaction and
    Kinetics of a Thermoset Polymer,” J. Appl. Polym. Sci., vol. 24, pp. 937
    (1979).
    [32] A. J. Kinloch, “Adhesion and Adhesives Science and Technology,” CHAPMAN &
    HALL, London, pp. 18-24 (1994).
    [33] 沖津俊直, “接著剂の実際知識,” 東洋經濟新報社, 東京, pp. 36-38 (1980).
    [34] William C. Wake, “Adhesion and the Formulation of Adhesives,” ELSEVIER
    APPLIED SCIENCE PUBLISHERS, London, pp. 33-37 (1986).
    [35] Norbert M. Bikales, “Adhesion and Bonding,” WILEY-INTERSCIENCE, New York,
    pp. 41-42 (1971).
    [36] 李輝煌, ”田口方法─品質設計的原理與實務,” 高立圖書有限公司, 台北 (2003).
    [37] Louis T. Manzione, “Plastic Packaging of Microelectronic Devices,” Van
    Nostrand Reinhold, New York (1990).
    [38] Michael G. Pecht, Luu T. Nguyen, Edward B. Hakim, “Plastic Encapsulated
    Microelectronics,” John Wiley & Sons, Inc., New York (1995).

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE