| 研究生: |
雷博宇 Lei, Po-Yu |
|---|---|
| 論文名稱: |
電鍍沉積CuSCN薄膜作為電阻式記憶體之研究 A study of electro-deposited CuSCN thin film for RRAM applications |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 電阻式記憶體 、CuSCN 、電化學沉積 、功率消耗 、歐姆傳導 、有限的空間電荷電流(SCLC) |
| 外文關鍵詞: | CuSCN, Electrodeposition, RRAM, Endurance, Retention, SCLC, Ohmic conduction, Power Consumption |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是研究單層之硫氰酸亞銅(CuSCN)材料作為電阻式記憶體(RRAM)元件之電性探討。我們在成長CuSCN這層薄膜的方法為電化學沉積。上電極的選擇是採用惰性金屬,白金(Pt),以防止電極因施加電壓成離子而擴散至下層材料,導致元件特性受到影響。
不同濃度成長的CuSCN薄膜會呈現出不同的表面形態,在經由電性的量測後,並由兩個阻態的電阻穩定性來選擇最後CuSCN薄膜之製作濃度,我們選擇12 mM成長的CuSCN作為元件之薄膜且厚度最佳化的值為800 nm,X光繞射儀(XRD)及掃瞄式電子顯微鏡(SEM)顯示出CuSCN之晶粒沿(003)之面向呈柱狀生長,這對元件之耐久性(Endurance),穩定性及電壓分布範圍皆很有影響。
在電性上,Forming process時,電流的限流設定為2 mA,而forming 電壓大約在8.3 V左右。在電阻絲機制分析上,低阻態(LRS)漏電流的形式是歐姆傳導(Ohmic Conduction),高阻態(HRS)的漏電流在小偏壓下是以歐姆傳導,而隨著偏壓變大後機制轉變為有限的空間電荷電流機制(Space Charge Limited Current)為主導。電阻值方面,兩阻態在元件重複循環操作100次正偏壓及負偏壓做Endurance之量測,高阻值及低阻值的比例範圍在25倍至50倍,兩阻態的阻值都很穩定。於100 mV下讀取高阻態及低阻態持續10000秒做操作週期(Retention)之量測,兩阻態阻值比至少都有10倍以上。在電阻分布圖中顯示出兩阻態之範圍,低阻值大約為100 Ω到400 Ω,而高阻值大約為4000 Ω到8000 Ω,而在電壓分布圖上,兩種阻態的電壓分布範圍也很小,set電壓大約在0.4 V ~ 0.9 V而reset電壓大約在-0.2 V ~ -0.9 V,以上資料可看出此CuSCN作為RRAM元件的優點為: 操作之功率消耗小且兩個阻態在操作上穩定。
This study investigates the characterizations of electrodeposited CuSCN film as a RRAM device. The device structure is Pt/CuSCN/ITO glass. To prevent the metal ion diffusion of the top electrode, which can affect device characteristics when we apply the voltage, inert metal Pt was used.
Preliminarily device characterizations were performed using various concentrations to form the CuSCN film, the 800 nm thick 12 mM-formed CuSCN was selected due to its stable resistances in both high and low resistance states. SEM and XRD analyses show that the CuSCN film has a strong (003) peak and is c-axis oriented with columnar grains growth.
The current compliance is set to 2 mA to test the forming process, the data show that the forming voltage is ~8.3 V. As for the current mechanism of the device, the low resistance state (LRS) follows the ohmic conduction. For the high resistance state (HRS), it follows the ohmic conduction also in low voltages, however, the space charge limited current (SCLC) mechanism dominates the current conduction when the applied voltage gets higher. The endurance and retention of the CuSCN RRAM was evaluated, we did the WRER(Write-Read-Erase-Read) test for measuring the resistance of the device for 100 cycles and read at 100 mV. For device endurance, it shows that the ratio of R_HRS to R_LRS (R_HRS/R_LRS ) is ranging from 25 to 50 times, and the resistance of two states are stable. In retention test, we read at 100 mV in two resistance states for a duration of 10000 seconds, it shows that the ratio of R_HRS to R_LRS is at least 10 times. Under 100 mV cumulative plot of the resistance, it shows that the resistance of the high resistance state and the low resistance state are ranging from 100 Ω to 400 Ω and from 4000 Ω to 8000 Ω, respectively. The set voltage V_set is 0.4 V ~ 0.9 V and reset voltage V_reset is -0.2 V ~ -0.9 V, from the distributions of set and reset voltages, power consumption of the CuSCN RRAM is very low, and the voltage ranges of the V_set and V_reset are small.
[1] K. K.-W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, et al., "Improving DRAM performance by parallelizing refreshes with accesses," in High Performance Computer Architecture (HPCA), 2014 IEEE 20th International Symposium on, 2014, pp. 356-367.
[2] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, "Low-cost inter-linked subarrays (LISA): Enabling fast inter-subarray data movement in DRAM," in High Performance Computer Architecture (HPCA), 2016 IEEE International Symposium on, 2016, pp. 568-580.
[3] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, "A case for exploiting subarray-level parallelism (SALP) in DRAM," ACM SIGARCH Computer Architecture News, vol. 40, pp. 368-379, 2012.
[4] B. H. Calhoun and A. P. Chandrakasan, "A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation," IEEE journal of solid-state circuits, vol. 42, pp. 680-688, 2007.
[5] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, et al., "A 4.6 GHz 162Mb SRAM design in 22nm tri-gate CMOS technology with integrated active V MIN-enhancing assist circuitry," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, 2012, pp. 230-232.
[6] Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King, and B. Nikolić, "FinFET-based SRAM design," in Proceedings of the 2005 international symposium on Low power electronics and design, 2005, pp. 2-7.
[7] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. Kastner, N. Nagel, et al., "FeRAM technology for high density applications," Microelectronics Reliability, vol. 41, pp. 947-950, 2001.
[8] H. Shiga, D. Takashima, S.-i. Shiratake, K. Hoya, T. Miyakawa, R. Ogiwara, et al., "A 1.6 GB/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes," IEEE Journal of Solid-State Circuits, vol. 45, pp. 142-152, 2010.
[9] D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, et al., "Breaking the speed limits of phase-change memory," Science, vol. 336, pp. 1566-1569, 2012.
[10] R. Simpson, P. Fons, A. Kolobov, T. Fukaya, M. Krbal, T. Yagi, et al., "Interfacial phase-change memory," Nature nanotechnology, vol. 6, p. 501, 2011.
[11] K. Inomata, Y. Saito, K. Nakajima, and M. Sagoi, "Double tunnel junctions for magnetic random access memory devices," Journal of Applied Physics, vol. 87, pp. 6064-6066, 2000.
[12] X. Han, Z. Wen, and H. Wei, "Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin- polarized current switching," Journal of Applied Physics, vol. 103, p. 07E933, 2008.
[13] H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, et al., "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[14] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices," IEEE Transactions on Electron Devices, vol. 56, pp. 186-192, 2009.
[15] 鄭建民 and 陳開煌, "二氧化鈦電阻式記憶體之特性," 2011.
[16] R. Womack and D. Tolsch, "A 16 kb ferroelectric nonvolatile memory with a bit parallel architecture," in Solid-State Circuits Conference, 1989. Digest of Technical Papers. 36th ISSCC., 1989 IEEE International, 1989, pp. 242- 243.
[17] T. Nuns, S. Duzellier, J. Bertrand, G. Hubert, V. Pouget, F. Darracq, et al., "Evaluation of recent technologies of non-volatile RAM," in Radiation and Its Effects on Components and Systems, 2007. RADECS 2007. 9th European Conference on, 2007, pp. 1-8.
[18] J. Daughton, "Magnetic tunneling applied to memory," Journal of Applied Physics, vol. 81, pp. 3758-3763, 1997.
[19] H. Meng, R. Sbiaa, M. Akhtar, R. Liu, V. Naik, and C. Wang, "Electric field effects in low resistance CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy," Applied Physics Letters, vol. 100, p. 122405, 2012.
[20] J. Åkerman, "Toward a universal memory," Science, vol. 308, pp. 508-510, 2005.
[21] S. Lai, "Current status of the phase change memory and its future," in Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE International, 2003, pp. 10.1. 1-10.1. 4.
[22] G. Meijer, "Who wins the nonvolatile memory race?," Science, vol. 319, pp. 1625-1626, 2008.
[23] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature materials, vol. 6, p. 833, 2007.
[24] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully room-temperature- fabricated nonvolatile resistive memory for ultrafast and high-density memory application," Nano letters, vol. 9, pp. 1636-1643, 2009.
[25] P. Heremans, G. H. Gelinck, R. Muller, K.-J. Baeg, D.-Y. Kim, and Y.-Y. Noh, "Polymer and organic nonvolatile memory devices," Chemistry of Materials, vol. 23, pp. 341-358, 2010.
[26] J. C. Scott and L. D. Bozano, "Nonvolatile memory elements based on organic materials," Advanced Materials, vol. 19, pp. 1452-1463, 2007.
[27] S. Baek, D. Lee, J. Kim, S. H. Hong, O. Kim, and M. Ree, "Novel digital nonvolatile memory devices based on semiconducting polymer thin films," Advanced Functional Materials, vol. 17, pp. 2637-2644, 2007.
[28] B.-H. Lee, H. Bae, H. Seong, D.-I. Lee, H. Park, Y. J. Choi, et al., "Direct observation of a carbon filament in water-resistant organic memory," ACS nano, vol. 9, pp. 7306-7313, 2015.
[29] J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden, and G. J. Exarhos, "Electronic and defect structures of CuSCN," The Journal of Physical Chemistry C, vol. 114, pp. 9111-9117, 2010.
[30] H. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model for filamentary streamers in an ambient field," IEEE transactions on dielectrics and electrical insulation, vol. 10, pp. 73-79, 2003.
[31] D. Kim, S. Seo, S. Ahn, D.-S. Suh, M. Lee, B.-H. Park, et al., "Electrical observations of filamentary conductions for the resistive memory switching in NiO films," Applied physics letters, vol. 88, p. 202102, 2006.
[32] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, "Resistive switching memory effect of Zr O 2 films with Zr+ implanted," Applied physics letters, vol. 92, p. 012117, 2008.
[33] M. A. Lampert and P. Mark, "Current injection in solids," 1970.
[34] 劉子瑄 and 許鉦宗, "非晶矽薄膜於電阻式記憶體研究," 2011.
[35] F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, 2014.
[36] K.-C. Chang, C.-H. Pan, T.-C. Chang, T.-M. Tsai, R. Zhang, J.-C. Lou, et al., "Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO 2 fluid treatment," IEEE Electron Device Letters, vol. 34, pp. 617-619, 2013.
[37] B. Majkusiak, P. Palestri, A. Schenk, A. Spinelli, C. Compagnoni, and M. Luisier, "Modeling and simulation approaches for gate current computation," Nanoscale CMOS, pp. 213-257, 2013.
[38] Y. Zhu, H. Qian, L. Wang, L. Wang, and J. Tang, "Measurement and analysis of substrate leakage current of RF mems capacitive switches," Microelectronics Reliability, vol. 54, pp. 152-159, 2014.
[39] R. Perera, A. Ikeda, R. Hattori, and Y. Kuroki, "Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation," Microelectronic Engineering, vol. 65, pp. 357-370, 2003.
[40] 賴耿陽 and 沈岳林, "實用電鍍技術全集," 復漢出版社, 民國 87 年 再刷, 1998.
[41] K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, and G. Sangiliyandi, "Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis," Materials letters, vol. 62, pp. 4411-4413, 2008.
[42] C. V. Stan, C. M. Beavers, M. Kunz, and N. Tamura, "X-Ray Diffraction under Extreme Conditions at the Advanced Light Source," Quantum Beam Science, vol. 2, p. 4, 2018.
[43] 林麗娟, "X 光繞射原理及其應用," X 光材料分析技術與應用專題, 1994.
[44] Y. Ni, Z. Jin, and Y. Fu, "Electrodeposition of p‐type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation," Journal of the American Ceramic Society, vol. 90, pp. 2966-2973, 2007.
[45] M. Yang, J.-J. Zhu, and J.-J. Li, "Synthesis and characterizations of porous spherical CuSCN nanoparticles," Materials Letters, vol. 59, pp. 842-845, 2005.
[46] D. Ielmini, "Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth," IEEE Transactions on Electron Devices, vol. 58, pp. 4309-4317, 2011.
[47] L. Xiao-Yi, L. Hong-Xia, G. Hai-Xia, Y. Ha-Ni, W. Guo-Ming, L. Shi-Bing, et al., "Resistive switching characteristics of Ti/ZrO2/Pt RRAM device," Chinese Physics B, vol. 23, p. 117305, 2014.
[48] W.-Y. Chang, C.-S. Peng, C.-H. Lin, J.-M. Tsai, F.-C. Chiu, and Y.-L. Chueh, "Polarity of bipolar resistive switching characteristics in ZnO memory films," Journal of The Electrochemical Society, vol. 158, pp. H872-H875, 2011.
[49] I. Kim, M. Siddik, J. Shin, K. P. Biju, S. Jung, and H. Hwang, "Low temperature solution-processed graphene oxide/Pr0. 7Ca0. 3MnO3 based resistive-memory device," Applied Physics Letters, vol. 99, p. 042101, 2011.
[50] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, "Localized metallic conductivity and self-healing during thermal reduction of SrTiO 3," Physical review letters, vol. 88, p. 075508, 2002.
[51] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters, vol. 92, p. 022110, 2008.
[52] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, "Anode- interface localized filamentary mechanism in resistive switching of Ti O 2 thin films," Applied physics letters, vol. 91, p. 012907, 2007.
[53] N. Balke, M. Gajek, A. K. Tagantsev, L. W. Martin, Y. H. Chu, R. Ramesh, et al., "Direct observation of capacitor switching using planar electrodes," Advanced Functional Materials, vol. 20, pp. 3466-3475, 2010.
[54] H. Lv, X. Xu, H. Liu, R. Liu, Q. Liu, W. Banerjee, et al., "Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory," Scientific reports, vol. 5, p. 7764, 2015.
[55] X. Ji, Y.-W. Dong, Z.-Q. Huo, and W. Xu, "Resistive Switching Memory Based on CuSCN Films Fabricated by Solution-Dipping Method," Electrochemical and Solid-State Letters, vol. 12, pp. H344-H347, 2009.
[56] F. Zhuge, S. Peng, C. He, X. Zhu, X. Chen, Y. Liu, et al., "Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments," Nanotechnology, vol. 22, p. 275204, 2011.
校內:2023-06-30公開