| 研究生: |
顏聖鴻 Yan, Sheng-Hong |
|---|---|
| 論文名稱: |
沉澱熟成法製備二氧化鈰酸鹼度感測器之研究 Preparation of Ceria-based pH Sensors by Precipitation Method with Aging |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 二氧化鈰 、沉澱熟成法 、延伸式閘極場效電晶體 、酸鹼度感測器 |
| 外文關鍵詞: | CeO2, precipitation, EGFET, pH sensors |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以二氧化鈰/摻氟氧化錫(CeO2/FTO)感測膜製作延伸式閘極場效電晶體酸鹼度感測器(EGFET-type pH sensors),旨在探討製備變因對粉體性質、薄膜性質與型態及感測特性之影響,以尋求最佳感測條件。
研究中以沉澱熟成法製備CeO2奈米粒子,經分散後以旋轉塗佈於FTO基材,改變製備變因包含:H2O2濃度、NaOH濃度、固含量、分散劑重量組成、旋轉塗佈速率及煅燒溫度等參數加以探討。結果發現,隨著H2O2濃度、NaOH濃度分別提升到10 wt%及3 M時,CeO2具有最高的比表面積,感測靈敏度亦最大,且感測靈敏度與CeO2比表面積成正相關,顯示活性座主導感測靈敏度。隨著固含量增加,CeO2於FTO表面沉積量亦增加,增加活性座數目以提升感測靈敏度,但隨著固含量過高使薄膜片電阻顯著上升,造成感測靈敏度下降。隨著分散劑重量組成上升,可有效抑制CeO2粒子團聚,使均勻沉積於FTO基材,使有效活性座數目上升,因此感測靈敏度上升,但是隨著分散劑重量組成上升的同時,分散液黏度亦增加,因此薄膜厚度增加,造成片電阻上升,造成感測靈敏度下降。隨著旋轉塗佈速率增加,薄膜片電阻下降,提升高測靈敏度,但轉速提升的同時也使CeO2沉積於FTO基材表面數目下降,因此活性座下降,造成感測靈敏度下降。煅燒溫度提升時,可使CeO2粒子結晶性增加,晶粒變大有利電訊傳遞,同時CeO2粒子與FTO基材之附著力亦增加,因此感測靈敏度亦增加。由實驗結果顯示,最佳元件(S1-XA24-A)之最適化製備條件為:H2O2濃度10 wt%、NaOH濃度3 M、固含量1.09 wt%、分散劑重量組成為24倍、旋轉塗佈速率2000 rpm、煅燒溫度600℃;於20 ℃下,最佳元件感測靈敏度達85.34±0.60 mV/pH,線性度為0.9982,適用範圍於pH 2-12,遠高於能斯特極限(其值為58.2 mV/pH at 20 ℃)。吾人進一步以最佳元件進行遲滯、時漂、陽離子干擾、離子強度干擾、對離子大小等效應之探討,由結果可知本元件穩定性良好、氫離子選擇性高且不易受外界影響,顯示此元件具備感測優勢。值得一提的是,從對離子大小效應結果得知對離子大小對感測結果具有影響力,當對離子水合離子直徑越大(超過3.5 Å)時,感測靈敏度上升幅度明顯,此為超越能斯特極限原因之一。
綜觀以上,以CeO2奈米粒子修飾FTO元件,不只能提升高測靈敏度,同時也增加元件穩定性及選擇性,各實驗結果均顯示本元件具有極大發展潛力。
In this work, CeO2/FTO pH sensors based on extended gate field-effect transistor (EGFET) were fabricated. The influences of preparation parameters on properties of CeO2/FTO sensing films were investigated. The pH sensing characteristics of CeO2/FTO devices were also studied to find the optimum preparation condition. Experimentally, CeO2 nanoparticles prepared by the precipitation method with aging were spin-coated on the FTO substrate. The influences of preparation parameters of resulting devices including H2O2 concentration, NaOH concentration, solid content, dispersant composition, spinning rate, calcination temperature were studied. Among the studied CeO2/FTO devices, the best device (S1-XA24-A) demonstrated excellent sensing characteristics with super-Nernstian sensitivity of 85.34±0.60 mV/pH and the linearity of 0.9982 applied to pH2-12 at 20℃, which was prepared under H2O2 concentration of 10wt%, NaOH concentration of 3 M, solid content of 1.09wt%, dispersant composition of 24, spinning rate of 2000rpm, and calcination temperature of 600℃. From the investigation of hysteresis effect, drift effect, cation interference, ionic-strength interference, and counter-ion size effect, the result indicated that the S1-XA24-A device showed good stability and high H+ selectivity. From the results of the counter-ion size effect, it showed that the counter-ion size has an obvious influence on the sensing result.
[1]S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, W. Zhang, “Progress of new label-free techniques for biosensors:A review”, Crit. Rev. Biotechnol., 36, 465-481, 2015.
[2]P. Bergveld, “ Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Trans. Biomed. Eng., 17, 70-71, 1970.
[3]J. van der Spiegel , I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe”, Sens. Actuators B:Chem., 4, 291-298, 1983.
[4]C. E. Lue, T. C. Yu, C. M. Yang, Dorota G. Pijanowska, and C. S. Lai, “Optimization of urea-EnFET based on Ta2O5 layer with post annealing”, Sensors., 11, 4562-4571, 2011.
[5]A. Vijayalakshmi, Y. Tarunashree, B. Baruwati, S. V. Manorama, B. L. Narayana, R. E. C. Johnson, and N. M. Rao, “Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles”, Biosens. Bioelectron., 23, 1708-1714, 2008.
[6]A. P. Soldatkin, D. V. Gorchkov, C. Martelet, and N. Jaffrezic-Renault, “Application of charged polymeric materials as additional permselective membranes for modulation of the working characteristics of penicillin sensitive ENFETs”, Mater. Sci. Eng., C, 5 , 35-40, 1997.
[7]Jianguo Liu, Li Liang, Gaoxiang Li, Rushui Han, and Keming Chen, “H+ ISFET-based biosensor for determination of penicillin G”, Biosens. Bioelectron., 13, 1023-1028, 1998.
[8]A. Poghossian, M. J. Schoning, P. Schroth, A. Simonis, and H. Luth, “An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime”, Sens. Actuators, B, 76, 519-526, 2001.
[9]A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Luth, and M. J. Schoning, “Penicillin detection by means of field-effect based sensors- EnFET, capacitive EIS sensor or LAPS ? ”, Sens. Actuators, B, 78, 237-242, 2001.
[10]P. Estrela, A.G. Stewart, F. Yan, and P. Migliorato, “Field effect detection of biomolecular interactions”, Electrochim. Acta, 50, 4995-5000, 2005.
[11]X. L. Luo, J. J. Xu, W. Zhao, and H. Y. Chen, “Glucose biosensor based on ENFET doped with SiO2 nanoparticles”, Sens. Actuators B, 97, 249-255, 2004.
[12]K. Yao, Y. H. Zhu, P. Wang, X. L. Yang, P. Z. Cheng, and H. Lu, “ENFET glucose biosensor produced with mesoporous silica microspheres”, Mater. Sci. Eng., C, 27, 736-740, 2007.
[13]A. Sardarinejad, D. K. Maurya, and K. Alameh, “The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor”, Sens. Actuators A-Phys., 214, 15-19, 2014.
[14]A. Das, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu, L. Chow, and R. M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor”, Actuators B-Chem., 205, 199-205, 2014.
[15]T. Y. Kim and S. Yang, “Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing”, Sens. Actuators B:Chem., 196, 31-38, 2014.
[16]T. M. Pan, C. W. Wang, Y. S. Huang, W. H. Weng, and S. T. Pang, “Effect of postdeposition annealing on the structural and sensing characteristics of Tb2O3 and Tb2Ti2O7 sensing films for electrolyte-insulator-semiconductor pH sensors”, J. Electrochem. Soc., 162, B83-B88, 2015.
[17]T. M. Pan, C. W. Wang, and S. Y. Pan, “High-performance electrolyte–insulator–semiconductor pH sensors using high-κ CeO2 sensing films”, IEEE electron device lett., 36, 1195-1197, 2015.
[18]T. M. Pan, T. Y. Wu, Y. H. Huang, J. L. Her, B. S. Lou, S. H. Tsai, and S. T. Pang, “Comparison of CeTiO3 and Ce2TiO5 sensing films for pH sensors”, IEEE electron device lett., 39, 855-888, 2018.
[19]T. M. Pan, and C. Y. Tan, “Study of structural properties and sensing performance of high performance sol-gel synthesized CeTixOy sensing membranes”, Electrochim. Acta, 269, 686-693, 2018.
[20]T. M. Pan, C. W. Wang, and C. Y. Chen, “Structural properties and sensing performance of CeYxOy sensing films for electrolyte-insulator-semiconductor pH sensors”, Sci. Rep., 7, 2945, 2017.
[21]T. M. Pan, and C. Y. Tan, “Effect of Ti content on structural properties and sensing performance of sol-gel synthesized PrTixOy sensing membranes”, J. Electrochem. Soc., 164, B330-B335, 2017.
[22]R. E. G. van Hal, J. C. T. Eijkel, and P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters”, Sens. Actuators B, 24, 201-205, 1995.
[23]K. B. Parizi, X. Q. Xu, A. Pal, X. L. Hu, and H. S. Philip Wong, “ ISFET pH sensitivity: counter-ions play a key role”, Sci. Rep., 7, 41305, 2017.
[24]J. L. Her, S. P. Bag, P. Garu, B. S. Lou, and T. M. Pan, “Super Nernstian pH sensitivity of excess cerium in Ce2-xSrx(Zr0.53Ti0.47)Oy sensing membranes for solid state pH sensors”, Sens. Actuators B:Chem., 274, 133-143, 2018.
[25]T. M. Pan, C. W. Wang, S. Mondal, and S. T. Pang, “Super-Nernstian sensitivity in microfabricated electrochemical pH sensor based on CeTixOy film for biofluid monitoring”, Electrochim. Acta, 261, 482-490, 2018.
[26]J. Graciani, A. M. Marquez, J. J. Plata, Y. Ortega, N. C. Hernandez, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, “Comparative study on the performance of hybrid DFT functionals in highly correlated oxides:The case of CeO2 and Ce2O3”, J. Chem. Theory Comput., 7, 56-65, 2011.
[27]P. Venkataswamy, K. N. Rao, D. Jampaiah, and B. M. Reddy, “Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures”, Appl. Catal. B:Environ., 162, 122-132, 2015.
[28]L. Nie, D. Mei, H. F. Xiong, B. Peng, Z. B. Ren, X. I. Pereira Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, and Y. Wang, “Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation”, Science, 358, 1419-1423, 2017.
[29]O. Y. Kurapova, S. M. Shugurov, E. A. Vasileva, V. G. Konakov, and S. I. Lopatin, “Vaporization features of CeO2-ZrO2 solid solutions at high temperature”, J. Alloys and Compd., 776, 194-201, 2019.
[30]S. Ershov, M. E. Druart, M. Poelman, D. Cossement, R. Snyders, and M. G. Olivier, “Deposition of cerium oxide thin films by reactive magnetron sputtering for the development of corrosion protective coatings”, Corros. Sci., 75, 158-168, 2013.
[31]C. L. Wu, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on SnO2/Al/SiO2/Si ISFET with a metal light shield”, Mater. Chem. Phys., 63, 153-156, 2000.
[32]D. H. Kwon, B. W. Cho, C. S. Kim, and B. K. Sohn, “Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET”, Sens. Actuators B, 34, 441-445, 1996.
[33]J. L. Her, M. H. Wu, Y. B. Peng, T. M. Pan, W. H. Weng, S. T. Pang, and L. F. Chi, “High performance GdTixOy electrolyte -insulator-semiconductor pH sensor and biosensor”, Int. J. Electrochem. Sci., 8, 606-620, 2013.
[34]Y. S. Chien, W. L. Tsai, I. C. Lee, J. C. Chou, and H. C. Cheng, “A novel pH sensor of Extended-Gate Field-Effect transistors with laser-irradiated carbon-nanotube network”, IEEE Electron Device Lett., 33, 1622-1624, 2012.
[35]H. H. Li, W. S. Dai, J. C. Chou, and H. C. Cheng, “An extended-gate field-effect transistor with low-temperature hydrothermally synthesized SnO2 nanorods as pH sensor”, IEEE Electron Device Lett., 33, 1495-1497, 2012
[36]H. H. Li, C. E. Yang, C. C. Kei, C. Y. Su, W. S. Dai, and J. K. Tseng, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor”, Thin Solid Films, 529, 173-176, 2013.
[37]W. L. Tsai, B. T. Huang, P. Y. Yang, K. Y. Wang, C. Hsiao, and H. C. Cheng, “Oxygen Plasma Functionalized Multiwalled Carbon Nanotube Thin Film as A pH sensing membrane of extended-gate field-effect transistor”, IEEE Electron Device Lett., 34, 1307-1309, 2013.
[38]P. Y. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, H. H. Li, and H. C. Cheng, “pH sensing characteristics of extended-gate field-effect transistor based on Al-doped ZnO nanostructures hydrothermally synthesized at low temperatures.” IEEE Electron Device Lett., 32, 1603-1605, 2011.
[39]C. E. Lue, I S. Wang, C. H. Huang, Y. T. Shiao, H. C. Wang, C. M. Yang, S. H. Hsu, C. Y. Chang, W. Wang, and C. S. Lai, “pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process”, Microelectron. Reliab., 52, 1651-1654, 2012.
[40]J. L. Lin, and H. Y. Hsu, “Study of sodium ion selective electrodes and differential structures with anodized indium tin oxide”, Sensors, 10, 1798-1809, 2010.
[41]J. C. Lin, B. R. Huang, and Y. K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors”, Sens. Actuators B:Chem., 184, 27- 32, 2013.
[42]L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate”, Sens. Actuators B:Chem., 71, 106-111, 2000.
[43]B. R. Huang and T. C. Lin, “Leaf-like carbon nanotube/nickel composite membrane extended-gate field-effect transistors as pH sensor”, Appl. Phys. Lett., 99, 023108, 2011.
[44]J. F. Hsu, B. R. Huang, C. S. Huang and H. L. Chen, “Silicon Nanowires as pH Sensor”, Jpn. J. Appl. Phys., 44, 2626–2629, 2005.
[45]B. R. Huang, J. C. Lin, and Y. K. Yang, “ZnO/silicon nanowire hybrids extended-gate field-effect transistors as pH sensors”, J. Electrochem. Soc., 160, B78-B82, 2013.
[46]J. L. Lin, Y. M. Chu, S. H. Hsaio, Y. L. Chin, and T. P. Sun, “Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors”, Jpn. J. Appl. Phys., 45, 7999-8004, 2006.
[47]K. A. Yusof, R. A. Rahman, M. A. Zulkefle, S. H. Herman, and W. F. H. Abdullah, “EGFET pH sensor performance dependence on sputtered TiO2 sensing membrane deposition temperature”, J. sensors, 2016, 1-9, 2016.
[48]N. M. Abd-Alghafour, N. M. Ahmed, Z. Hassan, M. A. Almessiere, M. Bououdina, and N. H. Al-Hardan, “High sensitivity extended gate effect transistor based on V2O5 nanorods”, J Mater. Sci:Mater. Electron., 28, 1-6, 2016.
[49]C. Y. Kuo, S. J. Wang, R. M. Ko, and H. H. Tseng, “Super-Nernstian pH sensors based on WO3 nanosheets”, Jpn. J. Appl. Phys., 57, 04FM09, 2018.
[50]H. S. Rasheed, N. M. Ahmed, and M. Z. Matjafri, “Ag metal mid layer based on new sensing multilayers structure extended gate field effect transistor (EG-FET) for pH sensor”, Mater. Sci. Semicond. Process., 74, 51-56, 2018.
[51]B. R. Huang, C. L. Hsu, Y. K. Wang, and W. L. Yang, “Core-shell p-n junction Si nanowires as rapid response and high-sensitivity pH sensor”, IEEE Sens. J., 17, 3967-3974, 2017.
[52]M. S. Anwar, Shalendra Kumar, Faheem Ahmed, Nishat Arshi, G. S. Kil, D. W. Park, Jiho Chang , and B. H. Koo, “Hydrothermal synthesis and indication of room temperature ferromagnetism in CeO2 nanowires”, Mater. Lett., 65, 3098-3101, 2011.
[53]M. P. Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, and M. Salavati-Niasari, “Synthesis and characterization of CeO2 nanoparticles via hydrothermal route”, J. Ind. and Eng. Chem., 21, 1301-1305, 2015.
[54]M. L. Dos Santos, R. C. Lima, C. S. Riccardi, R. L. Tranquilin, P. R. Bueno, J. A. Varela, and E. Longo, “Preparation and characterization of ceria nanospheres by microwave-hydrothermal method”, Mater. Lett., 62, 4509-4511, 2008.
[55]A. I. Y. Tok, F. Y. C. Boey, Z. Dong, and X. L. Sun, “Hydrothermal synthesis of CeO2 nano-particles” , J. Mater. Process. Technol., 190, 217-222, 2007.
[56]N. C. Wu, E. W. Shi, Y. Q. Zheng, and W. J. Li, “Effect of pH of medium on hydrothermal synthesis of nanocrystalline Cerium(IV) oxide powders” , J. Am. Ceram. Soc., 85, [10], 2462-2068, 2002.
[57]M. Hirano and M. Inagaki, “Preparation of monodispersed cerium(IV) oxide particles by thermal hydrolysis:influence of the presence of urea and Gd doping on their morphology and growth” , J. Mater. Chem., 10, 473-477, 2000.
[58]Y. C. Zhou and M. N. Rahaman, “Hydrothermal synthesis and sintering of ultrafine CeO2 powders” , J. Mater. Res., 8, [7], 1680-1686, 1993.
[59]K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, and Y. D. Li., “Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes” , J. Catal., 229, 206-212, 2005.
[60]P. Pal, S. K. Pahari, A. Sinhamahapatra, M. Jayachandran, G. V. Manohar Kiruthika, H. C. Bajaj and A. B. Panda, “CeO2 nanowires with high aspect ratio and excellent catalytic activity for selective oxidation of styrene by molecular oxygen” , RSC Adv., 3, 10837-10847, 2013.
[61]F. Gao, Q. Lu, and S. Komarneni, “Fast Synthesis of Cerium Oxide Nanoparticles and Nanorods” , J. Nanosci. Nanotechnol., 6, 3812-3819, 2006.
[62]H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu, and C. H. Yan, “Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes” , J. Phys. Chem. B, 109, 24380-24385, 2005.
[63]Y. Guan, Emiel J. M. Hensen, Y. Liu, H. D. Zhang, Z. C. Feng, and C. Li, “Template-free synthesis of sphere, rod and prism morphologies of CeO2 oxidation catalysts” , Catal. Lett., 137, 28-34, 2010.
[64]H. F. Li, G. Z. Lu, Q. Dai, Y. Wang, Y. Guo, and Y. L. Guo, “Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres”, Appl. Catal., B:Environ., 102, 475-483, 2011.
[65]H. F. Li, G. Z. Lu, Q. Dai, Y. Wang, Y. Guo, and Y. L. Guo, “Hierarchical organization and catalytic activity of high surface area mesoporous ceria microspheres prepared via hydrothermal routes” , ACS Appl. Mater. Inter., 2, 838-846, 2010.
[66]H. Zou, Y. S. Lin, N. Rane, and T. He, “Synthesis and characterization of nanosized ceria powders and high-concentration ceria Sols” , Ind. Eng. Chem. Res. 43, 3019-3025, 2004.
[67]B. Djuricic and S. Pickering, “Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders” , J. Eur. Ceram. Soc., 19, 1925-1934, 1999.
[68]W. Liu, L. J. Feng, C. Zhang, H. X. Yang, J. X. Guo, X. F. Liu, X. Y. Zhang and Y. Z. Yang, “A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor” , J. Mater. Chem. A, 1, 6942-6948, 2013.
[69]S. K. Meher and G. R. Rao, “Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2:microstructural effect on promoting Pt/C for methanol electrooxidation” , ACS Catal., 2, 2795-2809, 2012.
[70]G. J. Zhang, Z. R. Shen, M. Liu, C. H. Guo, P. C. Sun, Z. Y. Yuan, B. H. Li, D. T. Ding, and T. H. Chen, “Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids.” , J. Phys. Chem. B, 110, 25782-25790, 2006.
[71]D. Terribile, A. Trovarelli, J. Llorca, C. de Leitenburg, and G. Dolcetti, “The synthesis and characterization of mesoporous high surface area ceria prepared using a hybrid organic/inorganic route” , J. Catal., 178, 299-308, 1998.
[72]J. S. Lee, and S. C. Choi, “Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH” , Mater. Lett., 58, 390-393, 2004.
[73]Y. M. Xu, Y. W. Zhang, Y. M. Zhou, S. M. Xiang, Q. L. Wang, C. Zhang and X. L. Sheng, “CeO2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support” , RSC Adv., 5, 58237-58245, 2015.
[74]J. C. Zhang, H. X. Yang, S. P. Wang, W. Liu, X. F. Liu, J. X. Guo and Y. Z. Yang, “Mesoporous CeO2 nanoparticles assembled by hollow nanostructures:formation mechanism and enhanced catalytic properties” , Cryst. Eng. Comm., 16, 8777-8785, 2014.
[75]Y. W. Zhang, R. Si, C. S. Liao, C. H. Yan, C. X. Xiao and Y. Kou, “Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals” , J. Phys. Chem. B, 107, 10159-10167, 2003.
[76]Y. J. He, “Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route” , Mater. Chem. Phys., 92, 134-137, 2005.
[77]L. Manziek, E. Langenmayr, A. Lamola, M. Gallagher, N. Brese, and N. Annan, “Functionalized emulsion and suspension polymer particles:nanoreactors for the synthesis of inorganic materials” , Chem. Mater., 10, 3101-3108, 1998.
[78]S. Supakanapitak, V. Boonamnuayvitaya, and S. Jarudilokkul, “Synthesis of nanocrystalline CeO2 particles by different emulsion methods” , Mater. Charact., 67, 83-92, 2012.
[79]S. Deshpande, S. Patil, S. VNT Kuchibhatla, and S. Seala, “Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide” , Appl. Phys. Lett., 87, 133113, 2005.
[80]S. Patil, S. C. Kuiry, S. Seal, and R. Vanfleet, “Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating” , J. Nanopart. Res., 4, 433-438, 2002.
[81]S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri, “Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route” , Mater. Chem. Phys., 115, 423-428, 2009.
[82]Z. L. Wang, Z. W. Quan, and J. Lin, “Remarkable changes in the optical properties of CeO2 nanocrystals induced by Lanthanide ions doping” , Inorg. Chem., 46, 5237-5242, 2007.
[83]N. Ozer, “Optical properties and electrochromic characterization of sol-gel deposited ceria films” , Sol. Energy Mater. Sol. Cells, 68, 391-400, 2001.
[84]P. L. Chen and I. W. Chen, “Reactive cerium(1V) oxide powders by the homogeneous precipitation method” , J. Am. Ceram. Soc., 76, [6], 1577-1578, 1993.
[85]F. Zhang, Q. Jin, and S. W. Chan, “Ceria nanoparticles:size, size distribution, and shape” , J. Appl. Phys., 95, 4319-4326, 2004.
[86]F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, “Cerium oxide nanoparticles:size-selective formation and structure analysis” , Appl. Phys. Lett., 80, 127-129, 2002.
[87]X. D. Zhou, and W. Huebner, “Size-induced lattice relaxation in nanoparticles” , Appl. Phys. Lett., 79, 3512-3514, 2001.
[88]M. Yamashita, K. Kameyama, S. Yabe, S . Yoshida, Y. Fujishiro, T. Kawai and T. Sato, “Synthesis and microstructure of calcia doped ceria as UV filters”, J. Mater. Sci., 37, 683-687, 2002.
[89]Z. M. Liu, Y. Yi, S. X. Zhang, T. L. Zhu, J. Z. Zhu, and J. G. Wang, “Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures”, Catal. Today, 216, 76-81, 2013.
[90]X. J. Yao, C. J. Tang, Z. Y. Ji, Y. Dai, Y. Cao, F. Gao, L. Dong, and Y. Chen, “Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO”, Catal. Sci. Technol., 3, 688-698, 2013.
[91]R. Suresh, V. Ponnuswamy, and R. Mariappan, “Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method”, App. Surf. Sci., 273, 457-464, 2013.
[92]C. Pojanavaraphan, A. Luengnaruemitchai, and E. Gulari, “Hydrogen production by oxidative steam reforming of methanol over Au/CeO2 catalysts”, Chem. Eng. J., 192, 105-113, 2012.
[93]X. D. Zhou, W. Huebner, and H. U. Anderson, “Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2”, Appl. Phys. Lett., 80, 3814-3816, 2002.
[94]T. Ungar, I . Dragomir-Cernatescu, D. Louer, and N. Audebrand, “Dislocations and crystallite size distribution in nanocrystalline CeO2 obtained from an ammonium cerium(IV)-nitrate solution”, J. Phys. Chem. Solids, 62, 1935-1941, 2001.
[95]S. Yabe, and T. Sato, “Cerium oxide for sunscreen cosmetics”, J. Solid State Chem., 171, 7-11, 2003.
[96]Z. Y. Feng, X. W. Huang, M. Wang, X. Sun, Y. Xu, Q. N. Xue, and S. L. Chen, “Green synthesis of ceria powders with special physical properties by carbon dioxide carbonization”, J. Rare Earth., 36, 1084-1089, 2018.
[97]L. Nadjia, E. Abdelkader, B. Naceur, and B. Ahmed, “CeO2 nanoscale particles: Synthesis, characterization and photocatalytic activity under UVA light irradiation”, J.Rare Earth., 36, 575-587, 2018.
[98]N. S. Arul, D. Mangalaraj, P. C. Chen, N. Ponpandian, P. Meena, and Y. Masuda, “Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods”, J. Sol-Gel Sci. Technol., 64, 515-523, 2012.
[99]Z. Z. Wang, Y. Xin, Z. L. Zhang, Q. Li, Y. H. Zhang, and L. M. Zhou, “Synthesis of Fe-doped CeO2 nanorods by a widely applicable coprecipitation route”, Chem. Eng. J., 178, 436-442, 2011.
[100]J. Saranya, K. S. Ranjith, P. Padmanaban, D. Mangalaraj, and R. T. R. Kumar, “Cobalt-doped cerium oxide nanoparticles:Enhanced photocatalytic activity under UV and visible light irradiation”, Mater. Sci. Semicond. Process., 26,218-224, 2014.
[101]Y. Ono, and H. Fujii, “Low temperature synthesis of cerium oxide nanorods and their suppressive effect on photocatalysis of titanium dioxide”, Ceram. Int., 41, 15231-15234, 2015.
[102]D. Channei, A. Nakaruk, and S. Phanichphant, “Influence of graphene oxide on photocatalytic enhancement of cerium dioxide”, Mate. Lett., 209, 43-47, 2017.
[103]M. Li, M. T. Wang, Z. G. Liu, Y. H. Hu, and J. X. Wu, “Cerium dioxide with large particle size prepared by continuous precipitation”, J. Rare Earth., 27, 991-996, 2009.
[104]C. Huang, X. Q. Wu, W. Ren, and P. Shi, “Preparation of CeO2 micro/nanostructure and their photocatalytic properties in glow discharge electrolysis”, Ceram. Int., 41, S47-S50, 2015.
[105]M. W. Shinwari, M. J. Deen, and D. Landheer, “Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design”, Microelectron. Reliab., 47, 2025-2057, 2007.
[106]R. Boistelle, and J. P. Astier, “Crystallization mechanisms in solution”, J. Cryst. Growth, 90, 14-30, 1988.
[107]F. Huang, H. Z. Zhang, and J. F. Banfield, “Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS”, Nano Lett., 3, 373-378, 2003.
[108]B. Gilbert, H. Z. Zhang, F. Huang, M. P. Finnegan, G. A. Waychunas, and J. F. Banfield, “Special phase transformation and crystal growth pathways observed in nanoparticles”, Geochem. Trans., 4, 20-27, 2003.
[109]J. G. Li, T. Ikegami, Y. Wang, and T. Mori, “Reactive ceria nanopowders via carbonate precipitation”, J. Am. Ceram. Soc., 85, [9], 2376-78, 2002.
[110]H. O. K. Kirchner, “Coarsening of grain-boundary precipitates”, Metall. Trans., 2, 2861-2864, 1971.
[111]F. H. Scholes, A. E. Hughes, S. G. Hardin, P. Lynch, and P. R. Miller, “Influence of hydrogen peroxide in the preparation of nanocrystalline ceria”, Chem. Mater., 9, 2321-2328, 2007.
[112]J. C. Chou, and C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs”, IEEE Sens. J., 9, 277-284, 2009.
[113]D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc. Faraday Trans. I, 70, 1807-1818, 1974.
[114]M. Pudukudy, Z. Yaakob, Q. M. Jia, and M. S. Takriff, “Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts”, New J. Chem., 42, 14843-14856, 2018.
[115]K. Wang, Y. Q. Chang, L. Lv, and Y. Long, “Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film”, Appl. Surf. Sci., 351, 164-168, 2015.
[116]T. Naganuma, and E. Traversa, “Stability of the Ce3+ valence state in cerium oxide nanoparticle layers”, Nanoscale, 4, 4950-4953, 2012.
[117]S. Xu, C. H. Zhou, Y. Yang, H. Hu, B. Sebo, B. L. Chen, Q. D. Tai, and X. Z. Zhao, “Effects of ethanol on optimizing porous films of dye-sensitized solar cells”, Energy Fuels, 25, 1168-1172, 2011.
[118]L. Bousse, and S. Mostarshed, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sens. Actuators B, 17, 157-164, 1994.
[119]李美萱, “銀-鉑/二氧化鈰觸媒之合成及其催化一氧化碳氧化之研究” , 成功大學化學工程學系碩士論文, 2018.
[120]張晞硯, “延伸閘極式金屬氧化物酸鹼度感測器之製備與特性探討” ,成功大學化學工程學系碩士論文, 2013.
[121]H. S. Rasheed, Naser M. Ahmed, and M. Z. Matjafri, “New ZnO/Au/ZnO multilayer field effect transistor with extended gate as a sensing membrane”, Ukr. J. Phys., 62, 699-704, 2017.
[122]S. Palit, B. S. Lou, J. L. Her, S. T. Pang, and T. M. Pan, “Impact of Sn content on structural properties and sensing performance of InSnxOy thin film on flexible substrate for EGFET pH sensors”, J. Electrochem. Soc., 166, B407-B413, 2019.
[123]Eder Jos´e Guidelli, Elidia Maria Guerra, and Marcelo Mulato, “V2O5/WO3 mixed oxide films as pH-EGFET sensor:sequential re-usage and fabrication volume analysis”, ECS Journal of Solid State Science and Technology, 1, N39-N44, 2012.
[124]郭家瑋, “以電紡沉積法製備二氧化鈦酸鹼度感測器之研究”, 成功大學化學工程學系碩士論文, 2017.
[125]徐士軒, “二氧化鈰/摻氟氧化錫酸鹼度感測器之製備研究”, 成功大學化學工程學系碩士論文, 2017.
[126]Y. H. Liao, and J. C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system”, Sens. Actuators B, 128, 603-612, 2008.
[127]F. A. Sabah, N. M. Ahmed, Z. Hassan, and M. A. Almessiere, “Study effects of thin film thickness on the behavior of CuS EGFET implemented as pH sensor”, Digest Journal of Nanomaterials and Biostructures, 11, 787-793, 2016.
[128]C. H. Kao, H. Chen, L. T. Kuo, J. C. Wang, Y. T. Chen, Y. C. Chu, C. Y. Chen, C. S. Lai, S. W. Chang, and C. W. Chang, “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure”, Sens. Actuators B, 194, 419-426, 2014.